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Abstract Colluding apps bypass the security measures
enforced by sandboxed operating systems such as Android.
App collusion can be a real threat in cloud environments
as well. Research in detecting and protecting against app
collusion requires a variety of colluding apps for experimen-
tation. Presently the number of (real or manually crafted)
apps available to researchers is very limited. In this paper we
propose a systemcalledApplicationCollusionEngine (ACE)
to automatically generate combinations of colluding andnon-
colluding Android apps to help researchers fairly evaluate
different collusion detection and protection methods. Our
initial implementation includes a variety of components that
enable the system to create more than 5,000 different collud-
ing and non-colluding app sets. ACE can be extended with
more functional components to create even more colluding
apps. To show the usefulness of our system, we have applied
different risk evaluation and collusion detection methods to
the created set of colluding apps.
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1 Introduction

Modern mobile operating systems, such as Android, use
sandboxing to prevent malicious apps from causing harmful
effects by restricting each process from accessing resources
outside its domain. In a sandboxed environment, access to
sensitive system resources is mediated by the operating sys-
tem and restricted by default. Apps requiring access must
request the necessary permissions from the user at instal-
lation or execution time. Additionally, resources from other
apps are outside of the boundaries of the sandbox andmust be
accessed through inter-application communication methods,
if available in the operating system.

Colluding apps use covert and overt channels to jointly
perform malicious operations [7]. The origin of app collu-
sion can be traced back to the confused deputy attack [23].
Confuseddeputies expose protected resources throughpublic
interfaces. In Android, confused deputy attacks can happen
in the form of permission re-delegation attacks [15,19,33]. A
careless developer may unintentionally expose permission-
protected resources by allowing the component that access
those resources to communicate with other apps through IAC
(inter-app communication). An attacker can take advantage
of this component to access the protected resource without
requesting the corresponding permission.

Colluding apps behave similarly to malicious apps taking
advantage of confused deputies, but their actions are exe-
cuted on purpose. Colluding apps can carry out information
theft attacks but also can be used to misuse a device service
or increase the impact of an attack inside a system. The main
goal of collusion attacks is to avoid the restrictions imposed
by sandboxed environments, like Android, to make an attack
more difficult to detect. Users, security researchers and mal-
ware analysis services normally focus on the the access to
resources given to an app to establish its risk level. If that
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access is split across several apps that collude, an app may
not require to request access to a protected resource. It will
only have to ask for it to a colluding app that already has
access to it. It must be noted that, while Android requires
the user to grant the permissions to be used by an app, it
does not impose any control on how apps exchange infor-
mation. Although app collusion is not a widespread problem
today, there have been already some cases of malicious apps
engaging in colluding behaviors. In [6] authors detected some
samples from the VirusShare project [1] that were receiving
data through broadcast receivers and sending it through SMS
messages. More recently, researchers discovered a malicious
version of the MoPlus SDK that was synchronizing the exe-
cution of the malicious payload through app collusion [2,9].
All apps running on a device embedding the MoPlus SDK
would talk to each other to determine which of these apps
had the most privileges. The app with the most privileges
would be the only one executing a local HTTP server to
receive commands from a command and control server. This
SDK was embedded in more than 5,000 versions of 20 apps.
This synchronization strategy was used by the developers
of the malicious SDK to avoid apps embedding the SDK
but with not enough privileges to activate the malicious pay-
load. In this way, only the payload within the app with the
required permissions would execute, maximising the result
of the attack.

Malware researchers have access to public datasets, pre-
dominantly for Android, that can be used to test their
detection methods [4,35]. This allows fair evaluation and
comparison between proposed methods, which in the end
fosters better quality research. Unfortunately, representative
datasets do not presently exist for colluding apps because the
very few examples of collusion happening in the wild, have
been discovered very recently.

This paper aims to meet the need a practical set of
colluding apps for research. Our system called Collusion
Application Engine (ACE) is capable of automatically gen-
erating multiple colluding app sets with a variety depending
on the configuration of app component templates and code
snippets. ACE can be extended with new app components
and code blocks to create a greater variety of new colluding
app sets, if needed. In this way, it is easy to create substantial
app sets (colluding and non colluding) for experimentation
avoiding the need for a great deal of manual programming
effort. The source code of ACE, as well as an initial set of
240 apps are available upon request from the authors.1

The remainder of this paper is structured as follows.
Section 2 describes previous efforts of other researchers in
exploring colluding apps. Section 3 describes the method-
ology underlying ACE and how it can generate thousands

1 The dataset is available on http://personal.rhul.ac.uk/udai/003/
colluding_apps.zip.

of different app sets. Section 4 shows the validation process
followed to test the apps created by ACE. Finally, Sect. 5
presents our conclusions and future directions for research.

2 Related work

Android malware detection has been an attractive and active
research area during the last fewyears.As a result, techniques
for detecting Android malware are readily available [17,30].
These can be categorised into two main groups: static and
dynamic. In static analysis, certain features of the app binary
are extracted and analysed using different approaches such
as machine learning techniques. Examples of these are [5],
using hardware components, requested permissions, critical
and suspiciousAPI calls, and network addresses ormany oth-
ers [11,14]. Conversely, dynamic analysis detects malware
at run-time. It deploys suitable monitors on Android systems
to log traces and features that are used to look for malicious
behaviours. Examples of these are [21], which keeps track of
the network traffic or [24], which collects information about
the usage of network usage, memory and CPU.

In contrast to malware detection, detecting colluding apps
involves not only obtaining features that show if an app
carries out a security threat, but also revealing whether com-
munication between several apps occurs during the attack.
As most of the existing malware detection techniques focus
only on detectingwhether single apps can carry the full extent
of the threat and not on their communication channels, they
are naturally constrained to detect collusion. Taint analysis
based approaches like Amandroid [32] and FlowDroid [6]
could be used for collusion detection. These are focused on
analyzing single apps to detect information leaks through
inter-component communications, ICC, (i.e. a location leak-
ing from a service to an activity within the same app). This
limits its usefulness against colluding apps. First, they are
only able to analyse single apps. This means that, although
they are able to detect leaks to other apps through inter-
app communications,2 (i.e. and activity/service from one app
sending information to an activity/service from another app),
they are not able to tell the other app that is taking part in the
collusion. In addition to this, colluding apps may use other
communication channels for collusion (i.e. covert channels)
rather than standard IAC channels.

To overcome this limitation, there are approaches like
APKCombiner [25] that join two applications into a single
APK. This enables information flow tools to analyze app
pairs.

The first known example of app collusion is a proof-
of-concept app named Soundcomber [29]. The first app,
which requires only access to the device microphone

2 InAndroid, IAC and ICC are implemented through very similar APIs.
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(RECORD_AUDIO permission), listens for calls to telephone
banking services and extracts the digits pressed by the
user. The second app, which requires only Internet access
(INTERNET permission), transmits the stolen information to
a remote server. Sensitive information extracted by the first
app is transmitted to the second app using standard Android
inter-application communications (IAC) and covert channels
(file locks, settings modifications, etc.).

The other colluding apps available in the literature can be
categorized into two groups: those developed to test detection
and protection methods and those developed to explore the
different covert channels available in Android.

A combination of Soundcomber, three proof-of-concept
colluding app sets, and another three vulnerable apps from
other works [15,18,26] were used to test an an operating
system extension called XManDroid [10]. The colluding
apps were capable of stealing user contacts, SMS messages,
and location, respectively. In a similar way, [7] describes
10 colluding apps developed to evaluate their static analysis
detection methods. In this case, colluding app sets are not
restricted to information theft. One of the developed sets is
also able to send premium-rate SMS messages to numbers
that are received from another app. Finally, the authors of
[8] evaluated their proposal against 13 colluding apps that
steal sensitive information and communicate through intents
and DroidBench [20]. DroidBench is the only public dataset
that includes colluding apps. However, it only includes three
colluding apps from 120, as it is intended for evaluating the
effectiveness of taint-analysis tools (where collusion is a sub-
set).

Overall, 36 different apps have been accounted as devel-
oped with the specific purpose of testing collusion detection
methods. The development of mobile apps is a time con-
suming task that requires to gain knowledge of the app
development environment and many hours of testing. An
automated method to develop colluding apps could reduce
the efforts researchers have to spend on these time consum-
ing tasks, so they can focus on improving the actual detection
methods. As an example of this, we use our automatic app
generation method to generate 240 colluding app pairs that
are tested with two different collusion detection methods.

BesidesSoundcomber, several previous papers have inves-
tigated the usage of covert channels for app collusion. Covert
channels in Android, as in other systems, are restricted by the
amount of shared resources, side channels that can be found
in the device, and human imagination [13,34]. [27] describes
a collusion scenario where a ContactManager and Pass-
wordManager app use overt and covert channels to extract
information through another app that acts like a generic
weather app. In [28], the authors enumerate and evaluate
the bandwidth of different overt and covert channels in real
devices. Covert channels tested include: intent type enumer-
ation, settings modification, thread and socket enumeration

and free disk space among others, which were used also in
[22]. An imaginative covert channel that uses the device actu-
ators and sensors is described in [3]. The vibration motor is
used to transmit information while the accelerometer sen-
sor is used to capture it from another app. More recently,
[16] showed how repackaging can be used to inject colluding
payloads into benign apps. Repackaged apps communicate
through a covert channel based on process enumeration.
ACE could be used to generate, with minimal effort, addi-
tional testing apps based on the specific features of these
specifically developed colluding apps (covert channels and
payloads). The rest of this sections describes in more detail
each of the components of ACE.

3 Application collusion engine

ACE aims to fill the need for colluding app datasets for
research experimentation. It can free up significant time for
researchers so they can focus instead on efforts to develop
collusion detection and protection methods. If a new covert
channel or attack is found, ACE can be easily extended. In
this section, we describe the system design and how it can
generate colluding app sets.

3.1 General overview

Generating individual malicious apps is a relatively simple
task. A malicious payload can be injected into a template
or repackaged app, modifying the required permissions as
needed. Generating colluding app sets is more complex
because the creation of one app needs to take into account
how the rest of the apps in the colluding set were generated.

ACE is composed by twomain components: theColluding
Set Engine and the Application Engine (Fig. 1). In a nutshell,
the Colluding Set Engine tells the Application Engine how
it should create apps in order to collude. The Colluding Set
Engine reads collusion description files from the Collusion
Template database and, using the App template database gen-
erates a set of application description files. The Application
Engine reads the app description files passed by theCollusion
Set Engine; it fetches the necessary payloads from the Code
Snippet and Component Templates databases and builds the
app files, producing a signed apk file for each app of the
colluding set.

3.2 Colluding set engine

The Colluding Set Engine tells the Application Engine how
to generate apps in such a way that they end up colluding.
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Fig. 1 General overview of the application collusion engine (ACE)

3.2.1 Collusion templates

A collusion template describes the different apps that take
part in a colluding app set. This is, the threat they carry out
and how they communicate. Colluding apps can carry out any
attack similar to the ones posed by single apps [30]: denial
of service, service misuse, and information and money theft.
Although the nature of each of these attacks is different, they
are all based on executing a set of actions in a specific order.

Our colluding templates follow this philosophy. For each
of the aforementioned threats, we have established a set
of actions that are required to execute it. For example, an
information theft attack will require (i) reading sensitive
information and (ii) sending it outside to a remote server. In
the sameway, a ransomware attackwill require (i) encrypting
the personal files (ii) processing or facilitating the payment
and (iii) decrypting back the files.

In our case, each defined action is implemented with a
specific code snippet. In this way, creating a colluding app
set to execute a threat requires to split, across different apps,
the different code snippets (actions) required to execute it.
The communication channel used to execute the attack is
not relevant to the attack goal. As long as the selected code
snippets allow apps to exchange information somehow, the
generated set will be able to collude. This fact enables us to
create many different colluding app sets for even the same
threat by interchanging different communication code snip-
pets. Additionally, this allows us to create colluding app sets
of an arbitrary number of apps. If the number of apps in the
set exceeds the number of actions, some of the apps will just
forward messages from one app to another.

3.2.2 App templates

An app template includes all the initial files, organized in an
Android project structure, that are required by the Android
Development Kit to build and sign an app. This includes,
among other things, an initial manifest file, build and sign-
ing scripts, a private key to sign the resulting apk, and all
the other resources that may be required during the process.
App templates can be customised to target specific Android
versions or include other specific features such as loading
images, etc.

3.3 Application engine

The Application Engine creates fully working apps by filling
app component templates with code snippets. The Applica-
tion Engine works as follows. First, it reads and processes
the app description file. This retrieves the required compo-
nent templates and code snippets and adds all the reference
resource files to the app source. Then, the component tem-
plates are filled; the appmanifest is generated; and the project
is built and signed, producing anAPKfile that can be installed
in a device.

3.3.1 Component templates

Apps inAndroid are composed of four different components:

– Activities represent screens of the user interface. Activ-
ities allow the user to interact with the app, giving back
some feedback. Activities run only on the foreground.
Apps are generally composed of a set of activities.

– Services execute operations in the background. They are
generally used by other components of the app to perform
long-running tasks that must be executed in the back-
ground: listening to incoming connections, play music,
download a file, and so on. Services can be configured so
they can be accessed remotely by other processes.

– Broadcast Receivers respond to broadcast messages that
can be sent through Intent objects, by the same or other
apps in the device.

– Content Providers manage access of other apps to the
app’s own shared data. Apps with content providers
enable other apps to read and write data inside their sand-
box.

The Application Engine generates these components
based on templates stored in the component templates
database. Each app component can be defined by differ-
ent templates, providing more variety across the generated
apps. A component template describes the main structure of
the component and injection points. Injection points allow
to fill the template with the necessary information such as
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package name, imports, strings or code. For example, the
activity shown in (Listing 1) has injection points for its name
($name), package ($package), layout file ($layout_file)
and code snippets ($code). Thevalue of these injection points
is defined by the application description files generated by the
Collusion Set Engine. In some cases, these will be assigned
a string like $name in our example. In others the injection
points will be replaced by a code snippet, like in the case
of $code. A more detailed description of the structure of
Application Description Files is given in Sect. 3.3.3.

1 package $package;
2

3 import android.support.v7.app.ActionBarActivity;
4 import android.os.Bundle;
5 import android.view.Menu;
6 import android.view.MenuItem;
7

8 public class $name extends ActionBarActivity {
9

10 @Override
11 protected void onCreate(Bundle savedInstanceState) {
12 super.onCreate(savedInstanceState);
13 setContentView(R.layout.$layout_file);
14 $code
15 }
16

17 ...
18 }

Listing 1 Activity template example. $package, $name, $layout_file and
$code are injection points

3.3.2 Code snippets

Code snippets are small portions of code that execute a spe-
cific function. These are used to populate the app components
at code injection points (markedwith $code). There are three
kinds of code snippets, depending on the kind of function
they enable to execute: resource, communication, and gen-
eral snippets. A code snippet can also have injection points.
These are used to specify parameters such as variable names,
string names or other information relevant to the specific
code. The app description files specify how the code snippets
are injected into the component. The Colluding Set Engine is
in charge of structuring them in a way such that the resulting
apps are able to communicate and collude.

Resource Snippets access the permission-protected resour-
ces of a device. They can be used to access sensitive
information (contacts, accounts, etc.) or to execute a partic-
ular function (sending a SMS message, starting a task, etc.).
The injection points of a resource snippet define parame-
ters such as the input and output variable names, required
variables such as the app context, etc. Resource snippets
generally require the app to request additional permissions.
These are defined along the snippet. Listing 2 shows a
code snippet used to get account data. Lines 1-3 specify
the additional imports required. Line 4 specifies that any

app including this code snippet must add the GET_ACCOUNTS

permission. The code snippet includes two injection points.
$context holds the name of the app context variable. This
is required to access the accounts service. $data stores all
the account information read from the device, so other code
snippets can use it.

1 import android.accounts.Account;
2 import android.accounts.AccountManager;
3 import android.content.Context;
4 //permission:android.permission.GET_ACCOUNTS
5 AccountManager am = (AccountManager)

$context.getSystemService(Context.ACCOUNT_SERVICE);
6 Account[] accounts_acs = accounts_am.getAccounts();
7 StringBuffer accounts_sb = new StringBuffer();
8 for(Account a : accounts_acs) {
9 accounts_sb.append(a.toString()+";");
10 }
11 String $data = accounts_sb.toString();

Listing 2 Code snippet used to access the accounts being stored in the
device

Communication Snippets are in charge of executing com-
munication tasks. There are two types of communication
snippets: those used to communicate outside the device and
those used for inter-app communication. Listing 3 shows a
code snippet that posts a string to a URL. The snipppet cre-
ates a new threat to open an HTTP client and execute the post
query. Lines 1-3 specify the required imports. Line 4 spec-
ifies that any app including this snippet should request the
INTERNET permission. Lines 5-17 include the code required
to post the message to the URL specified by the injection
point $url. The injection point $data specifies the variable
name or string value that should be sent to the remote server.

1 import org.apache.∗;
2 import java.util.ArrayList;
3 import java.util.List;
4 //permission:android.permission.INTERNET
5 final String toSendOutside = $data;
6 new Thread(new Runnable() {
7 public void run() {
8 HttpClient httpclient = new DefaultHttpClient();
9 HttpPost httppost = new HttpPost($url);

10 try {
11 List<NameValuePair> nameValuePairs = new

ArrayList<NameValuePair>(1);
12 nameValuePairs.add(new

BasicNameValuePair($postkey,
toSendOutside));

13 httppost.setEntity(new
UrlEncodedFormEntity(nameValuePairs));

14 HttpResponse response = httpclient.execute(httppost);
15 } catch (Exception e) {
16 ...
17 }}}).start();

Listing 3 Code snippet used to post a string value to the internet
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Code snippets also enable inter-component and inter-app
communication. If the snippet sends information to another
component of the app (i.e. an intent that launches a service
within the same app) it will allow inter-component commu-
nication. In this case, the app will also have to include the
definition of the component that will receive the commu-
nication and a code snippet to process that information. If
the snippet sends information to a component that belongs
to another app (i.e. a broadcast intent) it will allow inter-
component communication. Of course, an app can include
both ICC and IAC snippets (depending on the application
description file used to generated them).

Communication snippets are generally used in pairs: a
code snippet that sends information through a specific chan-
nel is used in one component and the code snippet that
receives the information through that same channel is used
in another component. If the snippets are placed within the
same app they will enable inter-component communication.
If the snippets are included in two different apps, they will
enable inter-app communication. As an example, Listing 4
shows the code required to send information to other apps
through a broadcast intent. This code snippet includes 4 injec-
tion points: $intentaction specifies the action that will be
assigned to the intent; $key is a string value used as a key for
the data that is being sent through the intent; $data specifies
the variable name or literal value of the information to be sent
through the intent; finally, $context requires the value of the
variable that holds a reference to the app context (activity or
service), which is required to send a broadcast intent.

1 import android.util.Log;
2 import android.content.Intent;
3 Intent i = new Intent();
4 i .setAction($intentaction);
5 i .putExtra($key,$data);
6 $context.sendBroadcast(i);

Listing 4 Code snippet used to sent a string value to other application
through an intent

Listing 5 shows the code snippet required to receive
information sent by the previous intent-based code snip-
pet. This code snippet declares, implements and regis-
ters a broadcast receiver. This could also be implemented
by using a BroadcastReceiver app component template.
$intentaction specifies the intent action that will be used
to match the broadcast intent. $key stores the key where
the transmitted data is being stored. $data will store the
value extracted from the intent. Finally, $code is another
code snippet that specifies the action to be executed with
the data. To create a communication channel, the values of
$intentaction and $key should match in both snippets.

1 import android.content.BroadcastReceiver;
2 import android.content.Context;
3 import android.content.Intent;

4 import android.content.IntentFilter;
5 IntentFilter ifilter = new IntentFilter($intentaction);
6 this.registerReceiver(new BroadcastReceiver() {
7 @Override
8 public void onReceive(Context context, Intent intent) {
9 String $data = intent.getStringExtra($key);

10 $code
11 }
12 }, ifilter );

Listing 5 Code snippet used to receive a broadcast intent

In some cases, there might be synchronization issues. For
example, if an app sends an intent and no app is registered to
receive it, the information sentwill be lost. In other cases, like
when using external storage this problem does not happen.
However, controlling this is not part of ACE, as execution
order (or even installation) is controlled by the developer.
When creating a pair of colluding apps, the Colluding Set
Engine generates the app description files avoiding this, in
such a way that the both apps can communicate.

General Snippets provide the general functionality to com-
plete a fully working app. These include: string concatena-
tion, encryption, variable initialization, logging, etc. These
can be used to combine, for example, execution of an app
that extracts information from the device and another that
encrypts it before sending it through an inter-app communi-
cation channel.

Listing 6 shows a code snippet used for logging. This
code snippet could also be used as a sending communication
snippet in Android versions below 4.3.

1 import android.util.Log;
2 Log.v($logtag,$tolog);

Listing 6 Logging code snippet

3.3.3 App description files

App Description Files specify which app components will
be used within an app, and how their injection points will be
filled. In some cases, injection points will be replaced with
simple strings, while in others, they will be replaced with
code snippets ($code injection points). Listing 7 shows the
app description file of a very simple app composed by only
one activity. Themain element of an app description file is the
project element. A project holds the rest of the app compo-
nents and defines the package name of the app. The activity
defined in this description file takes its template code from
resources/activities/SimpleActivity.java and inc-
ludes only one code block (inside the onCreate method.
This example code snippet has three injection points. The
first one initializes a string variable, text. The second regis-
ters a broadcast receiver that stores the value received through
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an intent into text. The last one logs the value of text with
a specific tag (VALUE). The activity attribute main specifies
if the activity is the main activity of the app.

1 <?xml version="1.0" encoding="utf−8"?>
2 <project template="resources/simple_app"

package="com.acid.app" label="Receiver">
3 <activity path="resources/activities" label="Receiver"

name="SimpleActivity.java"
layout="activity_simple.xml" package="com.acid.app"
main="true">

4 <code id="code">
5 <codesnippet path="basic" id="string_init">
6 <param id="var">text</param>
7 </codesnippet>
8 <codesnippet path="interapp_communications/intent"

id="recv_dynamic_receiver">
9 <param id="intentaction">"action.SEND"</param>

10 <param id="data">text</param>
11 <param id="key">"datakey"</param>
12 <code id="code">
13 <codesnippet path="basic" id="basic_log">
14 <param id="logtag">"VALUE"</param>
15 <param id="tolog">text</param>
16 </codesnippet></code></codesnippet></code>
17 </activity>
18 </project>

Listing 7 Example app description file

3.4 Building app sets

ACEcanbeused to create sets of colluding andnon-colluding
apps. The process of creating a colluding app set consists of
the following:

– Read the collusion template that specifies the actions to
be executed in each colluding app.

– Generate n apps where n is more than 1 and smaller than
the number of actions in the template; assign at least one
action to each app.

– Determine if there is going to be forwarding apps; if so,
create them.

– Add pairs of communication snippets to enable commu-
nications between the apps in the set.

– Generate the app description files for each app in the set.
– Call the Application Engine to create the set.

Figure 2 shows an example of this process for a colluding
app set that extracts the contact list from the user device. The
set is composed of three apps. The first app reads the contacts
and sends them to the second app via an intent. The second
app forwards the information to the third app using external
storage. The third app of the set sends the information to a
remote server.

3.5 Generating non-colluding apps

ACE also allows the easy generation of non-colluding apps.
This can be achieved by simply creating an app description
file (Fig. 2) that includes the necessary components and code
snippets for the required functionality. App description files
are automatically generated by the Collusion Set Engine for
colluding app sets, but can be manually created and used
directly with the Application Engine. This fact can be used
to generate apps that might be detected as colluding but are
not colluding. These generated apps could be used to test,
against false positives, new collusion detection methods. To
do this, we have followed these approaches:

– Create app sets that exchange information, but do not
access sensitive resources.

Fig. 2 Detailed example of all the processes executed by ACE
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Table 1 Resource code snippets used for the generation of colluding
app sets executing information theft attacks

Snippet Description

Accounts Returns device accounts information

Bookmarks Returns the browser bookmarks

Call log Returns the call log

Contacts Returns the list of contacts

History Returns the navigation history

IMEI Returns the device IMEI

Microphone Records audio for 5 seconds

WiFi List of WiFi SSID networks

Tasks List of processes being executed

– Create app sets that access sensitive resources but
exchange information that is not related to those sensitive
resources.

– Create apps that access sensitive resources and send
information to non-colluding apps via standard Android
communication channels (e.g. the generated app reads
your location and allows sharing it via facebook).

4 Experiments

The amount of colluding app sets that can be generated with
ACE depends greatly on the number of available code snip-
pets and templates. We have validated our tool by generating
a set of colluding apps and measuring its risk with differ-
ent methodologies available in the literature. This section
describes this process.

4.1 Colluding app set generation

We generated 240 pairs of colluding apps focusing on apps
that execute information theft attacks because most of the
detection tools are focused on that threat. Table 1 lists the dif-
ferent resource snippet used for app generation. Each of the
240 generated app sets includes one app that reads sensitive
information from the device. The code that reads the sensi-
tive information in that app is created by randomly injecting a
combination of the 9 snippets shown in Table 1. All the infor-
mation read by the snippets is concatenated into an string and
then sent to the other app for extraction.

In our experiments we have focused on two different com-
munication channels:

– Intents: an app launches a broadcast intent with a ran-
domly generated action. The receiving app registers a
broadcast receiver with the same action. Other intent
based communication channels (e.g. explicit intents

launching activities and services) could be easily added
by incorporating the corresponding code snippets.

– Shared Preferences: are an Android feature that allows
apps to store key-value pairs of data. configuration and
preferences. Although it is not intended for inter-app
communication, apps canuse key-value pairs to exchange
information if proper flags are defined (WORLD_READABLE
or WORLD_WRITABLE) when accessing and storing data. In
our sets, one of the apps saves the data into a world read-
able shared preference file. The receiving app accesses
the same file to read the information.

Each communication channel has been used in half of
the app sets. Thus, overall there are 120 app sets (240 apps)
that execute information theft attacks using intents and other
120 app sets (240 apps) that execute information theft using
shared preferences as communication channel.

4.2 Validation of collusion behavior

All the generated app sets have been tested on a real smart-
phone to verify that the collusion attack is realised when both
apps are present in a device. This processwas automatedwith
a script, usingmonkeyrunner,3 that installs, executes and ver-
ifies that the collusion attack happened on a real smartphone
(Moto E with Android 4.3). Specifically, the script executed
the following tasks for each pair of generated colluding apps:

– Install both apps.
– Run the first installed app for five seconds (in the fore-
ground).

– Press the home button.
– Run the second app for five seconds (in the foreground).
– Press the home button.
– Uninstall both apps.

To validate that the sensitive information was exchanged
between colluding apps, we manually created contacts,
and personal information on the device prior the tests. In
addition, information sent to a external web server (con-
trolled by us) was logged on the server and the device. To
ensure that the collusion really happened we verified the
device logs and the HTTP POST requests received by the
server.

4.3 Measuring collusion risk

Current App collusion detection techniques can be split in
two groups: operating system extensions and taint analysis

3 https://developer.android.com/studio/test/monkeyrunner/index.
html.

123

https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkeyrunner/index.html


Automated generation of colluding apps for experimental research

tools. The first group focuses on detecting and mitigat-
ing collusion during execution while the second group
focuses on analysing the static features of the app code
and resources without executing the apps. Unfortunately, we
were unable to find any working version of an operating
system extension, like XManDroid, to execute our experi-
ments.

FlowDroid andAmandroid are two examples of taint anal-
ysis proposals [6,32]. The focus of these tools is to detect
sensitive information flows between components within the
same application (ICC), but they are also capable of detect-
ing, with certain limitations, when an app component leaks
sensitive information to other apps through inter-app com-
munication (IAC). Their limitation relies on the fact that the
tools are only able to tell if sensitive information is being sent
to other apps via IAC, without specifying the actual apps, as
the analysis is only executed over one app. In order to iden-
tify if two apps communicate, the analysismust be performed
over the two apps separately to check if the sources and sinks
from both apps match. In our tests, neither FlowDroid or
Amandroid were able to identify apps receiving sensitive
information through intents or shared preferences. As both
tools execute single app analysis, they have no information
about the kind of information that can be received through
those channels, and therefore not consider those as possible
transmitters of sensitive information. This means that these
tools are appropriate to identify apps leaking sensitive infor-
mation, but not so good on identifying apps making use of
that information.

In 2015, Li et al. proposed APKCombiner, a method to
avoid this issue [25]. APKCombiner combines two apps
in such a way that IAC channels between the apps are
transformed into ICC channels (as the components that com-
municate are now within the same app). In this way, tools
like FlowDroid or Amandroid will be able to directly trace
the sensitive information flowing through the two compo-
nents (that are now together in the same app). It must be
noted that the app resulting from the execution of APKCom-
biner may not correctly execute on a system. However, the
resulting app is still valid for the purpose of static analy-
sis and transforming inter-app communication channels into
inter-component communication channels within the same
combined app [25].

We have used our dataset of 240 app sets to validate
two different methods for collusion risk assessment. In both
cases, APKCombiner joins all app components (activities,
services, etc.) into a single APK, solving naming conflicts
and merging both app manifest files. The generated apk file
inherits the permissions from both of the apps being com-
bined and inter-app communications between the two apps
become inter-component communications. After applying
APK combiner to each of the colluding app sets, we use
DroidRisk [31] and Amandroid [32] (Fig. 3).

Fig. 3 Process followed for risk analysis of colluding applications.
Apps are combined with APKCombiner before its analysis with
DroidRisk and Amandroid

4.3.1 DroidRisk

DroidRisk measures the risk posed by an app based on the
permissions it requests. Each newly requested permission
(pi ) increments the risk posed by an app depending on its
impact (I ) and its likelihood (L). The overall risk level of an
app is calculated as the sum of the risk levels of the permis-
sions it requests (Eq. 1).

Rapp =
∑

i

R(pi ) = L(pi ) × I (pi ) (1)

The likelihood and impact of each permission were mea-
sured by analyzing two datasets of 27,274 benign apps from
Google Play and 1,260 Android malware from the Malware
Genome Project. The likelihood of a permission was defined
as the probability of an app A being malware if that app is
requesting that permission (Equation 2).

P(A ∈ malware|pi )
= P(pi |A ∈ malware) × P(A ∈ malware)

P(pi )
(2)

The impact of requesting a permission was measured by
the categories assigned to them by Android: normal and dan-
gerous (other categories can not be requested by third party
apps).

Colluding apps generally distribute the permissions they
require to execute a threat. In our experiments we measured
the risks created by single and combined apps.4 Combining
the permissions used by apps that communicate to measure
the risk of collusion was also proposed in [7]. Figure 4 shows
two boxplots representing the risk associated with single and
combined apks respectively. As expected, the risk levels of
combined apks is higher than the obtained by single apps. The
difference in themaxima of each category can be attributed to
all the combined apks requesting the INTERNET permission.

4 Risk values were obtained measuring the permissions being used in
the combined APK files, and not the ones requested. This is due to a
bug in the latest available version of APKCombiner.
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Fig. 4 Risk values obtained by DroidRisk when analysing single and
combined apps

4.3.2 Amandroid

Amandroid is a static analysis tool for Android apps. It
analyzes the usage of sensitive APIs in a flow and context-
sensitive way across Android app components. In a nutshell,
Amandroid analyzes the different informationflows inside an
app, checking if any sensitive API can be accessed through
inter-component communication (ICC) calls. In addition,
Amandroid conducts basic string analysis for inferring ICC
call parameters such as the intent action. These allow Aman-
droid to precisely identify the ICC channels that can be used
by other app components to access sensitive APIs.

In our experiments, we combine Amandroid with APK-
Combiner. Amandroid is focused on ICC communications.
When analyzing a single colluding app, Amandroid will find
all the ICC sensitive information flows between the app,
including the one that is sending information outside the app.
However, it will not match that available ICC channel with
the other colluding app, as it is only analysing a single app.
After the APKs are combined with APKCombiner, all IAC
between components of the apps would become ICC (as the
components are now within the same app). Analysing the
combined app, Amandroid should be able to detect now the
IAC as ICCwithin the combinedAPKfile. If the components
identified by Amandroid in this case belong to the original
different apps (APKCombiner keeps the component pack-
ages and names), we can conclude that there was an IAC
between the apps.

Amandroid includes rules to detect information leakage,
information injection and API misuse attacks. As our collud-
ing apps are restricted to information theft, we have restricted
our analysis to information leakage. These information leak-
age flows could be flagged as other confused deputy attacks.

Table 2 Results of executing Amandroid

Category Detected Real

Apps accessing sensitive data 199 240

Apps with ICC (Intents) 120 120

Apps with ICC (Sh. Prefs) 0 120

Apps that leak information 56 240

However, in the context of our work and due to the nature of
the generated apps,we consider themas evidence of collusion
(app pairs have been generated to collude to steal sensitive
information).

Results obtained after running Amandroid on the 240
combined apps are shown in Table 2. Amandroid detects
only 199 apps accessing sensitive information. After man-
ually reviewing the 41 apps not flagged, we have seen that
Amandroid does not consider sensitive information elements
such as the user bookmarks, its navigation history, or record-
ing from the microphone. Amandroid correctly detects the
120 that use intents to share information across components.
However, it does not detect the usage of Shared Preference
files as a communication method. This is an expected result,
as Amandroid does not track the usage of this kind of files
for communications across components. Overall, only 56
apps were detected as leaking information. The 120 apps that
are using the shared preferences and the 64 apps accessing
sensitive information not considered by Amandroid as such
are not detected. Our results show that Amandroid could
be improved in two ways: (i) by considering other possi-
ble communication channels (was already known before our
experimental evaluation) and (ii) by adding the navigation
history, the bookmarks and the microphone as sources of
sensitive information.

4.4 Discussion

ACE allows researchers to quickly generate colluding app
sets. In this way, they can focus on developing new detec-
tion methods, rather than spending their time implementing
proof-of-concept colluding apps that have already been
developed by other researchers.

However, as with other artificially crafted corpus, auto-
matic generated apps should be used with care to avoid
certain risks. For instance, let’s imagine such corpus is the
only data used to train a machine learning algorithm. In this
scenario, there is a non-negligible risk of generating a model
that, instead of distinguishing colluding from non-colluding
apps, is distinguishing ACE generated from non-ACE gener-
ated apps. This could be avoided in threeways: (i) by avoiding
features too similar within the set of generated apps (size,
number of activities, etc.); (ii) by increasing the variability
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of code snippets and templates used in ACE; and (iii) by
including the few colluding applications that have already
been found in the wild [2,6,9].

5 Conclusions

In this paper we have presented ACE (Application Collu-
sion Engine), a system capable of easily generating colluding
app datasets. The datasets generated by ACE can be used by
researchers to validate and compare different collusion detec-
tion proposals.

We have tested ACE by generating 480 colluding apps
(240 colluding app pairs) that execute different information
theft attacks. All the generated colluding app pairs were exe-
cuted to verify the collusion attackwas possible.Although for
experimentation we have generated colluding sets consisting
of two apps, ACE is capable of generating app sets of an arbi-
trary number of apps.We have used two different approaches
to measure the risk of the generated apps. First, we have
compared the risk levels obtained by single and combined
applications using Droidrisk. Results show that approaches
that focus on single app analysis can underestimate the risk
that an app poses to a system. Approaches that analyze sensi-
tive informationflows, likeAmandroid, are better at detecting
collusion attacks. However, as in most collusion detection
research, these tools focus only on apps using the standard
ICC communications provided by Android (Intents). Adver-
saries may take advantage of this fact by implementing their
attacks through other well known, but not yet detectable,
channels such as shared preferences (up to Android 4.3),
external storage o covert channels.

Researchers working on new collusion detection methods
(static and dynamic analysis and operating system exten-
sions) can easily extend ACE to quickly generate fully
working apps for testing. This will enable, not only a quick
validation, but also fair comparison between different pro-
posals. As an example, [12] recently proposed an energy
consumption based method to detect the usage of several
covert channels for app collusion. Authors provide the source
code required to implement such covert channels. Their val-
idation experiments were executed by transmitting simple
messages after a random wait for each of the channels. By
adapting the source code of those channels to ACE, valida-
tions could be executed on thousands of different colluding
apps that transmit real colluding messages instead.

ACE is available by request (with its source code) from the
authors. Due to the risk of misuse, it has not been uploaded
to public repositories.
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Urbański,M.: Seeing the unseen: revealingmobilemalware hidden
communications via energy consumption and artificial intelligence.
IEEE Trans. Inf. Forensics Secur. 11(4), 799–810 (2016)

13. Chandra, S., Lin, Z., Kundu, A., Khan, L.: Towards a systematic
study of the covert channel attacks in smartphones. In: International
Conference on Security and Privacy in Communication Networks,
pp. 427–435. Springer (2014)

14. Dai, G., Ge, J., Cai, M., Xu, D., Li, W.: Svm-based malware detec-
tion for android applications. In: Proceedings of the 8th ACM
Conference on Security & Privacy in Wireless and Mobile Net-
works, New York, NY, USA, June 22–26, 2015, pp. 33:1–33:2
(2015). doi:10.1145/2766498.2774991

15. Davi, L., Dmitrienko, A., Sadeghi, A.R., Winandy, M.: Privilege
escalation attacks on android. In: Information Security, pp. 346–
360. Springer (2011)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.virusshare.com
http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-may-2016.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-may-2016.pdf
http://www.internetsociety.org/doc/drebin-effective-and-explainable-detection-android-malware-your-pocket
http://www.internetsociety.org/doc/drebin-effective-and-explainable-detection-android-malware-your-pocket
http://dx.doi.org/10.1109/ARES.2015.57
http://dx.doi.org/10.1145/2766498.2774991


J. Blasco, T. M. Chen

16. Dimitriadis, A., Efraimidis, P.S., Katos, V.: Malevolent app pairs:
an android permission overpassing scheme. In: Proceedings of the
ACM International Conference on Computing Frontiers, pp. 431–
436. ACM (2016)

17. Elish, K.O., Shu, X., Yao, D.D., Ryder, B.G., Jiang, X.: Profiling
user-trigger dependence for android malware detection. Comput.
Secur. 49, 255–273 (2015)

18. Enck, W., Ongtang, M., McDaniel, P.: Mitigating android software
misuse before it happens. The Pennsylvania State University, Tech-
nical Report, NAS-TR-0094-2008 (2008)

19. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Per-
mission re-delegation: attacks and defenses. In: USENIX Security
Symposium (2011)

20. Fritz, C., Arzt, S., Rasthofer, S., Bodden, E., Bartel, A., Klein, J., le
Traon, Y., Octeau, D., McDaniel, P.: Highly precise taint analysis
for android applications. In: ECSPRIDE, TUDarmstadt, Technical
Report (2013)

21. Han,H., Chen, Z., Yan,Q., Peng, L., Zhang, L.: A real-time android
malware detection system based on network traffic analysis. In:
Algorithms and Architectures for Parallel Processing—15th Inter-
national Conference, ICA3PP 2015, Zhangjiajie, China, November
18–20, 2015. Proceedings, Part III, pp. 504–516 (2015). doi:10.
1007/978-3-319-27137-8_37

22. Hansen, M., Hill, R., Wimberly, S.: Detecting covert communica-
tion on android. In: Local Computer Networks (LCN), 2012 IEEE
37th Conference on, pp. 300–303. IEEE (2012)

23. Hardy, N.: The confused deputy:(or why capabilities might have
been invented). ACM SIGOPS Oper. Syst. Rev. 22(4), 36–38
(1988)

24. Kim, K., Choi, M.: Android malware detection using multivariate
time-series technique. In: 17th Asia-Pacific Network Operations
and Management Symposium, APNOMS 2015, Busan, South
Korea, August 19–21, 2015, pp. 198–202 (2015). doi:10.1109/
APNOMS.2015.7275426

25. Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Le Traon, Y.: Apkcom-
biner: Combining multiple android apps to support inter-app
analysis. In: ICTSystemsSecurity andPrivacyProtection, pp. 513–
527. Springer (2015)

26. Lineberry, A., Richardson, D.L., Wyatt, T.: These arent the permis-
sions youre looking for. DefCon 18, 2010 (2010)

27. Marforio, C., Francillon, A., Capkun, S., Capkun, S., Capkun,
S.: Application collusion attack on the permission-based security
model and its implications for modern smartphone systems (2011)

28. Marforio, C., Ritzdorf, H., Francillon, A., Capkun, S.: Analysis
of the communication between colluding applications on modern
smartphones. In: Proceedings of the 28th Annual Computer Secu-
rity Applications Conference, pp. 51–60. ACM (2012)

29. Schlegel, R., Zhang, K., Zhou, X.y., Intwala, M., Kapadia, A.,
Wang,X.: Soundcomber: a stealthy and context-aware sound trojan
for smartphones. In: NDSS, vol. 11, pp. 17–33 (2011)

30. Suarez-Tangil, G., Tapiador, J.E., Peris-Lopez, P., Ribagorda, A.:
Evolution, detection and analysis of malware for smart devices.
IEEE Commun. Surv. Tutor. 16(2), 961–987 (2014). doi:10.1109/
SURV.2013.101613.00077

31. Wang, Y., Zheng, J., Sun, C., Mukkamala, S.: Quantitative secu-
rity risk assessment of android permissions and applications. In:
Data and Applications Security and Privacy XXVII, pp. 226–241.
Springer (2013)

32. Wei, F., Roy, S., Ou, X., et al.: Amandroid: a precise and general
inter-component data flow analysis framework for security vetting
of android apps. In: Proceedings of the 2014ACMSIGSACConfer-
ence on Computer and Communications Security, pp. 1329–1341.
ACM (2014)

33. Wu, L., Du, X., Zhang, H.: An effective access control scheme for
preventing permission leak in android. In: International Conference
on Computing, Networking and Communications (ICNC), pp. 57–
61. IEEE (2015)

34. Yue, M., Robinson, W.H., Watkins, L., Corbett, C.: Constructing
timing-based covert channels in mobile networks by adjusting cpu
frequency. In: Proceedings of theThirdWorkshop onHardware and
Architectural Support for Security and Privacy, p. 2. ACM (2014)

35. Zhou, Y., Jiang, X.: Android malware genome project (2012).
http://www.malgenomeproject.org

123

http://dx.doi.org/10.1007/978-3-319-27137-8_37
http://dx.doi.org/10.1007/978-3-319-27137-8_37
http://dx.doi.org/10.1109/APNOMS.2015.7275426
http://dx.doi.org/10.1109/APNOMS.2015.7275426
http://dx.doi.org/10.1109/SURV.2013.101613.00077
http://dx.doi.org/10.1109/SURV.2013.101613.00077
http://www.malgenomeproject.org

	Automated generation of colluding apps for experimental research
	Abstract
	1 Introduction
	2 Related work
	3 Application collusion engine
	3.1 General overview
	3.2 Colluding set engine
	3.2.1 Collusion templates
	3.2.2 App templates

	3.3 Application engine
	3.3.1 Component templates
	3.3.2 Code snippets
	3.3.3 App description files

	3.4 Building app sets
	3.5 Generating non-colluding apps

	4 Experiments
	4.1 Colluding app set generation
	4.2 Validation of collusion behavior
	4.3 Measuring collusion risk
	4.3.1 DroidRisk
	4.3.2 Amandroid

	4.4 Discussion

	5 Conclusions
	Acknowledgements
	References




