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Abstract

Insider threats are an increasing concern for most modern organizations. In-
formation leakage is one of the most important insider threats, particularly
according to its potential financial impact. Data Leakage Protection (DLP)
systems have been developed to tackle this issue and they constitute the
main solution to protect information systems against leaks. They work by
tracking sensitive information flows and monitoring executed applications
to ensure that sensitive information is not leaving the organization. How-
ever, current DLP systems do not fully consider that trusted applications
represent a threat to sensitive information confidentiality. In this paper, we
demonstrate how to use common trusted applications to evade current DLP
systems. Thanks to its wide range, trusted applications such as Microsoft
Excel can be transformed into standardized block ciphers. Information can
thus be encrypted in such a way that current DLP techniques cannot detect
that sensitive information is being leaked. This method could be used by non-
skilled malicious insiders and leaves almost no traces. We have successfully
tested our method against a well-known DLP solution from a commercial
provider (TrendMicro LeakProof). Finally, we also analyze the proposed
evasion technique from the malicious insider point of view and discuss some
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possible countermeasures to mitigate its use to steal information.

Keywords: malicious insiders, information leakage, sensitive information,
evasion, trusted applications, data leakage

1. Introduction

An insider can be defined as a user with legitimate access to the organi-
zation’s computers and networks (Pfleeger et al., 2010). Although insiders
usually work on achieving the organization’s goals, malicious insiders are
becoming an increasing threat. A malicious insider is an insider who inten-
tionally misuses an authorized level of access to affect the confidentiality,
integrity or availability of the organizations’ assets, including both data and
systems (Walker, 2008). Unlike attackers from outside the organization, ma-
licious insiders do not have to bypass security mechanisms deployed on the
organization perimeter (IDSs, firewalls, etc.) to attempt a successful attack
(Chivers et al., 2009). Additionally, they usually know the computer infras-
tructure, the way data is stored across it and, more significantly, its value
(Moore et al., 2009).

Information leakage is a threat that comprises the unauthorized disclo-
sure of confidential information. This includes any kind of information that
is essential to achieve the organization’s goals, such as blueprints, source
code, financial or investments plans, etc. Client’s private records are also
considered sensitive, as they enable the organization to access its clients and
have to be protected because of privacy regulations. Although information
leakage can be originated by both insiders (accidentally or maliciously) and
outsiders, information leakage incidents originated by users from within the
organization are often much more severe than incidents caused by outsiders
(CSO, 2010).

Information leakage events usually result in loss of competitiveness, eco-
nomic fees imposed by governments and loss of reputation (Rantala, 2008).
In fact, the economic losses produced by information theft related events have
been studied extensively in several reports and surveys. One, conducted over
US banking and financial institutions, stated that 91% of the organizations
that suffered from these threats experienced financial losses, which on 30%
of the cases exceeded 500.000 US dollars (Randazzo et al., 2005). As an
example, a T-Mobile employee sold hundreds of thousands of personal data
records of UK customers to rival firms (Wray, 2009). Those records were
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used to offer new contracts to T-Mobile customers, causing not only a ma-
jor economic impact due to reputation loss and privacy concerns, but also
because of clients that actually switched to another provider. Other reports
analyzing the risks derived from information leakage (Ponemon Institute,
2008) estimate that the average economic cost per incident was 2.2 million
Euros during 2008.

In order to mitigate the risks posed by information leakage incidents, a
few security firms have developed a new kind of security tools usually known
as DLP (Data Leakage Protection) systems. Vendors often claim that these
tools are able to prevent both accidental and malicious information leakage
(McCormick, 2008). DLP systems analyze network packets, files stored in
computers and data in use to ensure sensitive data is treated according to
the organization’s policies and regulations. A major drawback of the current
generation of DLP systems is that they do not offer protection against sophis-
ticated insiders attempting to evade detection. In fact, such evasion attacks
can be executed by means of well-known techniques, including obfuscating
data (e.g., through encryption) or hiding it by using some steganographic
scheme (Fisk et al., 2003; Zander et al., 2007). It may be argued that in a
tightly protected environment the set of applications that an employee can
execute (i.e. those that are trusted) is severely restricted. Thus, no user will
have enough privileges to download and execute a program implementing a
cipher or a covert channel over the network. On the other hand, trusted
applications used to perform daily tasks are generally executed without any
restrictions. However, some of these applications offer a rich functionality
and can be programmed to help an insider in carrying out an information
leakage attack.

In this paper we analyze how trusted applications could be used to by-
pass current DLP systems. We describe a simple but effective method that
could enable malicious insiders to steal information from a supposedly pro-
tected organization. The presented evasion method is based on modifying
the original purpose of an application using its built-in functionality. Our
technique does not require high technical skills or gaining administrative
privileges. We focus on common applications in corporative environments
(i.e. Microsoft Excel) to transform sensitive information into encrypted data.
Information transformed in this way can be transmitted outside the organi-
zation premises without being detected by current systems that would not
allow the download or usage of any encryption software. We analyze the
security and performance of this evasion method and report results obtained
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against a well known commercial state-of-the-art DLP solution. We finally
propose new techniques and mechanisms to improve current DLP systems in
order to reduce the risks associated with this kind of evasion attacks.

The rest of this paper is organized as follows. Section 2 provides and
overview of current techniques and systems to prevent information leakage.
Related work on evasion techniques in the context of DLP is given in Section
3. Section 4 describes our proposed evasion technique. An evaluation and
security analysis of our attack is described in Section 5. In Section 6, we
discuss some countermeasures that could be used to prevent this sort of
evasion attacks. Finally, Section 7 presents our main conclusions and discuss
some avenues for future work.

2. Data Leakage Protection

Organizations that do not implement mechanisms to protect their infor-
mation from being leaked are an easy target for malicious insiders. In fact,
simple mechanisms such as email messages, printers or removable devices
can be used to transmit sensitive information to unauthorized parties. The
steady increase of information leakage threats has driven organizations to
implement mechanisms to protect their information assets.

DLP solutions, also known as Information Leakage Protection or Content
Monitoring and Filtering solutions, are an emerging category of commercial
products made up of a set of components (sensors, information discovery
agents, content filtering agents, etc.) deployed in the organization’s infras-
tructure to avoid information leakage (McCormick, 2008). DLP solutions
use content analysis techniques to automatically discover what sensitive data
an organization holds. Once identified, these solutions monitor and control
its usage across the whole organization infrastructure. DLP solutions have
been widely analyzed by Gartner (Quellet and Proctor, 2008) and Forrester
(Raschke, 2006). Usually, DLP solutions consider information in three dif-
ferent states:

• Information at rest: Information assets that are stored, but not cur-
rently in use, are considered information at rest. Information assets
in this state are usually stored on hard drives, memory cards, solid
state disks or any other physical support for digital data. On servers,
this information is usually stored on databases, file repositories, data
warehouses, etc. On desktops and mobile devices, it is usually directly
stored on the file system as documents, designs, text files, binaries, etc.
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• Information in use: Any information asset being used at any worksta-
tion or server is considered information in use. Although information
being used is in most cases also sitting on a storage device, information
being used by a computer program is also stored in the system memory.

• Information in motion: As business processes are performed, employ-
ees need to access information located in remote locations and to share
them with other team mates. Any information asset that travels through
the organization network is considered information in motion. Proto-
cols controled by DLP solutions include HTTP, HTTPS, SMTP, P2P
protocols, FTP, etc.

Regardless of the state a piece of information is in, leakage is prevented
by triggering certain actions when some conditions are met. Such actions
include blocking file transfers, encrypting data or filtering out the executed
command and generating an alarm. Current DLP solutions still face many
open issues, notably reducing the number of false positives (Caputo et al.,
2009; Lawton, 2008).

Some recent works have presented several approaches that can be included
under the scope of DLP systems. Schear et al. (2007), proposed a system
to control information leakage through HTTP connections. Their proposal,
named Glavlit, is based on the usage of a warden. Any user inside the or-
ganization who wants to place documents on public web servers must first
obtain permission from the warden, which may be a machine or a human.
The warden analyzes the file in order to detect whether it contains sensitive
information or not. If a warden has not approved a file exiting the organiza-
tion, a gateway on the edge of the network will stop the HTTP request. A
similar approach is presented in (Liu et al., 2009). Authors propose the usage
of a framework that inspects network packets and looks for matches against
a critical data repository. The framework, which is called SIDD, uses sig-
nature matching to detect sensitive content. Additionally, SIDD allows the
detection of covert channels (Zander et al., 2007) that may be used to silently
extract sensitive information. Evaluation is performed by the authors on a
video redistribution scenario, which cannot be fully compared against real
scenarios wherein many more different kinds of content can be transmitted.

A different kind of work has focused on techniques to detecting gen-
eral malicious behavior from insiders, including information theft attempts.
Schonlau et al. (2001) proposed to model users’ behavior thorugh different
classification techniques. Such models can be later used to distinguish normal
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behavior from malicious insiders. A similar approach, but using also network
related events has been proposed by the MITRE Corporation (Caputo et al.,
2008, 2009). Using events generated by network traffic and organization con-
textual information, they built a Bayesian network to detect IT misuse by
malicious insiders.

Multilevel security models allow the classification of information into dif-
ferent levels in such a way that only users in possession of the necessary
clearance level can get access. The Bell-LaPadula model (Bell and LaPadula,
1973), which was originally designed for military environments, establishes a
security level to every subject and document. The BLP model establishes two
mandatory premises for access control. First, no process may read informa-
tion from a higher security level. Second, no process may write information
to a lower security level. Taking this into account, if a process is able to read
a sensitive information file, it means that the subject has clearance to read
sensitive information files. In such a case, and following the BLP model,
he would not be able to downgrade the security level of the file using that
process. This, along with mechanisms to avoid extraction of sensitive files
could be used to stop information leakages.

Although models such as BLP can serve to fight against information leak-
age, they also create a series of problems that make its use in organizations
infeasible (Anderson, 2001). First, considering that the security level of a
process is upgraded according to the files it accesses and the security level
of the subject, if a sensitive file is opened, the next opened files will have
to be written at the same level, independently of the level they came from.
This leads to an overall increase of the security level of all files that are
opened with that process. Therefore, besides stopping potential data leaks,
this model can lead to employees being stopped from doing their jobs. Ad-
ditionally, in order to work properly, applications and systems have to pass
through major (and often costly) modifications (Rubinovitz, 1994).

Process coloring is a technique devised to detect and trace the propagation
of worms across a system (Jiang et al., 2006). Each process susceptible of
being exploited is uniquely colored. Process interaction (read, write, etc.)
with other objects such as files or processes results in the propagation of
the color. In this way, if a worm infects a process, all interactions made
by the infected process can be traced back to the original source. Although
the presented technique is focused on processes, it could be adapted to track
sensitive information. Assume that, apart from assigning colors to processes,
each sensitive file is given a unique color. Using process coloring, each process
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will get colored by the colors of the sensitive files they interact with (colors
can be accumulated). If a colored process writes into another file, that file
will also gain the process colors. To avoid leaks of sensitive information, the
security policy could define a set of colors that cannot be transmitted outside
the organization by any means.

The usage of this kind of technique involves certain drawbacks. First,
process coloring, as presented by Jiang et al., is a technique that works
over processes. A color is assigned to each process, but documents and
other operating system elements are colorless until a process interacts with
them. In order to track sensitive information, additional colors should be
initially assigned to sensitive files. Besides, even after assigning colors to
sensitive files it is unclear if once an application is closed, colors should
remain on its processes. For example, an employee could use a text editor
to modify a sensitive file. Later on, the same user could open again the
same application and use it to create a personal document. Additionally,
depending on the amount of sensitive information to manage, the numbers
of colors can saturate the system, hindering the sensitive information tracing
process (Jiang et al., 2008).

3. Evasion Techniques against Information Leakage Protection

When DLP systems are deployed in an organization, the risk of informa-
tion leakage is reduced drastically, as they are capable of properly handling
most accidental information leakages. Nevertheless, the perspective of high
economic benefit and the sense of entitlement to information of some employ-
ees can motivate them to steal data, even when they perceive a risk of being
caught (Moore et al., 2009; Farahmand, 2009). In these cases, the malicious
insider will have to bypass the DLP mechanisms deployed.

Depending on the position of the malicious insider inside the organiza-
tion, it may be easier for him to steal information. For example, system
administrators and other IT-related staff usually have direct access to most
systems inside the organization. This allows them to steal information more
easily. As an example, during 2006 and 2007 an HSBC employee was able
to steal 24.000 records from private banking clients in Switzerland (Simo-
nian and Goff, 2010). Client records were delivered to French authorities to
prosecute tax dodgers. On the other hand, users with limited privileges may
be able to steal only the information they can access. In this case, in order
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to pass unnoticed to implemented protection systems they will have to use
deception or evasion techniques.

Current DLP solutions use simple pattern recognition techniques and key-
words to automatically detect sensitive information. Therefore, transforming
sensitive information in such a way that patterns do not match the modified
information can be used to bypass current DLP solutions. In fact, simple
transformations (such as character or word replacing or simple mathemati-
cal operations) produce this effect. However, these transformations can be
reversed easily, not being the most suitable method to be uses by a malicious
insider.

Cryptography and steganography perform transformations on informa-
tion in such a way that it is necessary to know the value of a secret key
to recover the original information, provided that the used algorithm is se-
cure enough. Cryptographic suites such as GnuPG (Skala et al., 2010) or
OpenSSL (Cox et al., 2001) could be used to encrypt sensitive information
files. In the same way, steganographic programs such as JPHS (Latham,
1999) and MP3Stego (Petitcolas, 1998) could hide sensitive information files
into innocuously looking images or audio files. Such applications are free and
easy to find on the Internet and do not require high technical skills.

To avoid the execution of such applications, operating systems and DLP
solutions allow system administrators to restrict application execution. These
mechanisms allow system administrators to define the applications that users
can run inside the organization’s computing environment. This forbids the
usage of the aforementioned tools and limits the allowed ones to a very small
number of trusted applications. Moreover, forensic evidence left by these
tools could be used to trace back the malicious insider (Zax and Adelstein,
2009).

Nevertheless, such restrictions are not applied to programs approved for
use by employees. Depending on the organization’s activity and the user
role, a wide variety of programs can be approved for execution, including
text processors, CAD programs, spreadsheets, etc. These applications are
extremely complex systems that are constantly used for the creation and
manipulation of information. DLP solutions do not consider the possibility
of using these applications for malicious purposes. However, the information
manipulation features included in these programs are so advanced that it
is possible to transform these into cryptographic applications. Thus, users
could have access to modern cryptographic algorithms that are presumably
restricted. We prove this point with an Excel implementation of two widely
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known block ciphers: TEA and AES.

4. Evading Information Leakage Protection

The goal of this section is to describe a method to bypass information
leakage protection systems through the usage of common trusted applica-
tions. Our method uses a commonly trusted application, Microsoft Excel,
to transform sensitive information in such a way that it will no longer be
recognized as sensitive. Other trusted applications could be used for the
same purpose. Nevertheless, spreadsheet applications allow to implement
standard ciphers as transformations, increasing the security (from the ma-
licious insider point of view) and hindering the detection of the sensitive
information. Transformations can only be reversed with the knowledge of
the secret key used to encrypt the information. This enables a successful
extraction of the data from the organization without detection by current
DLP technologies.

4.1. Implementing a Spreadsheet Cipher

Spreadsheet applications allow the usage of cells to perform data manip-
ulation, calculations through formulas and data representation for different
purposes: mathematics, statistics, management, etc. The presented evasion
method uses spreadsheet cells to implement modern ciphers. Our proposal
does not rely on the use of Visual Basic Scripts, as its execution can be
easily blocked by system administrators. Sensitive information can be en-
crypted through the usage of these “encrypting” cells, being able to export
the encrypted information and use it with no restrictions. This DLP evasion
technique hinders the prosecution of malicious insiders, as a secret key is
needed to reveal the real nature of the extracted information.

Apart from this trivial use, we believe that this techinique could be used
in other environments. For example, cipher spreadsheets may be used to
export certain cryptographic primitives to countries with export restrictions.
As the spreadsheet cells do not constitute a program itself, export restriction
laws could not be applied to it. Additionally, they could be used to encrypt
information without leaving any evidence of having an actual encryption
program in the computer. This could mislead computer forensic investigators
and hinder criminal investigations.
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We have implemented the Tiny Encryption Algorithm (TEA (Wheeler
and Needham, 1995)) and the Advanced Encryption Standard1 (AES (Na-
tional Institute of Standards and Technology, 2001)). We believe both algo-
rithms are good candidates for a proof of concept implementation because
of their simplicity. Nevertheless, we emphasize that TEA has been proven
to be insecure (Kelsey et al., 1997; Hong et al., 2004; Ko et al., 2004). The
resulting spreadsheets are freely available, so other researchers can analyze
these constructions and update them with new cryptographic algorithms.2.
In the following we describe in detail our method: We first explain how to
build encrypting workbooks and then discuss how to use the spreadsheet to
leak information.

4.1.1. Basic operations

Spreadsheets applications such as Microsoft Excel operate with decimal
numbers and do not include binary operations such as shift, rotations, bitwise
XOR, etc. Standard ciphers extensively use these kind of basic operations.
Thus, it is necessary to define such operations inside a spreadsheet environ-
ment. We next show how to implement some basic bitwise transformations
using standard operations (addition, multiplication, modulo, etc.) over dec-
imal numbers.

Shifts. A Shift operation is equivalent to a multiplication or division by 2b,
with b being the number of positions to be shifted. If A is the number to be
shifted, a right shift operation can be described as follows:

A >> b =
A

2b
(1)

This can be implemented in Excel through the following formula:

=QUOTIENT(A;POWER(2;b))

Similarly, the left shift operation is given by:

A << b = (A ∗ 2b) mod 232 (2)

which can be implemented as:

=MOD(A*(POWER(2;b));POWER(2;32))

1Our AES implementation is restricted to 128 bits key length.
2Available at http://www.seg.inf.uc3m.es/excelCiphers/ExcelCiphers.zip
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Rotations. Rotations are quite similar to shift operations, but bits shifted out
are inserted at the other end of the number. Implementing this in decimal
format requires to add the shifted bits to the result previously obtained from
the shift operation. The right rotation would then look like:

A >>> b =
A

2b
+ (A mod 2b) ∗ 232−b (3)

This could be implemented with the following formula:

=QUOTIENT(A;POWER(2;b))+(MOD(A;POWER(2;b))*POWER(2;32-b))

Similarly, left rotation is given by:

A <<< b = (A ∗ 2b) mod 232 +
A

232−b (4)

and can be implemented as:

=MOD(A*(POWER(2;b));POWER(2;32))+QUOTIENT(A;POWER(2;32-b))

Exclusive OR (XOR). Bitwise operations require to convert numbers stored
in cells into vectors, so bit-to-bit comparisons can be performed. Using an
auxiliary vector (P ), a decimal number can be converted into a bit vector
to perform the XOR operation. Equation 5 describes the implementation of
the XOR operation in a spreadsheet environment. Let P = {21, 22, . . . , 231}.

A⊕B = Σ32
i=0(((d

A

Pi

e − 2 ∗ d
d A
Pi
e

2
e) + (dB

Pi

e − 2 ∗ d
d B
Pi
e

2
e)) mod 2) ∗ Pi (5)

This can be implemented in a spreadsheet cell by:

=SUMPRODUCT(MOD(INT((A/P)-2*INT(INT(A/P)/2))

+(INT(B/P)-2*INT(INT(B/P)/2));2);P)

For the sake of clarity P has been defined as a reference in the formula
presented in this paper. Anyway, in any spreadsheet, the vector P can ob-
tained by replacing its reference with the following:

P = 2^(32-ROW(INDIRECT("A1:A32")))

These three operators suffice to implement both TEA and AES. Different
bitwise operations present in other algorithms can be implemented accord-
ingly. In the following we describe the implementation process in more detail.
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4.1.2. Defining Input and Constants

While TEA works with 32-bit integers, AES works with 8-bit integers.
This means that in our implementation, a cell used to implement TEA will
hold 32-bit integers and a cell used to implement AES will hold 8-bit inte-
gers. Therefore, depending on the algorithm to be implemented a different
number of cells will be required to define its input and constants. In our
implementation, 2 cells are required to define each plaintext block for TEA
and 16 cells are required for AES.

As most ciphers, our cipher implementation receives its input as integer
numbers, producing also numbers as output. Depending on the data to en-
crypt, it may be necessary to preprocess the input before passing it to the
cipher. This process can also be performed using the spreadsheet applica-
tion. Text to be encrypted can be transformed to integers using the CODE()
function, which converts characters to its ASCII value. To get back the orig-
inal text, the CAR() function can be used. By using these functions, our
approach can encrypt any sensitive information field in numeric or textual
form. Furthermore, if data is not be disposed in blocks (cells) of the required
length (32 bits for TEA and 8 bit for AES), the MOD() function can be used
to divide the input integer in the required n bit blocks. This approach has
served us well to leak several fictional (but valid) social security numbers
from a system protected by a modern DLP solution (see Section 5.3).

4.1.3. Building Lines of Code

In a computer program, a line of code usually performs one or more
basic operation and assigns the result to a variable in memory. Similarly,
in our case each basic operation can be implemented using one cell and the
corresponding spreadsheet formula. Note, however, that complex operations
can be also written in just one cell by replacing references to other cells with
the formula included in that cell. Thus for example, Figure 1 shows the
implementation of a line of code that calculates the value of the first 32 bit
of round i (v0) in TEA.

4.1.4. Rounds

Modern ciphers extensively use the concept of rounds. While rounds can
be implemented using iterative clauses provided by computer languages (i.e.
for), in our domain, to add a round, it is just necessary to copy and paste the
cells containing the operations from the previous round. If references between
cells are correctly defined, it will not be necessary to perform any changes in
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Figure 1: A detailed view of the implementation of the first round of TEA.

the copied cells. Once a full version of the cipher has been created, copying
the whole algorithm (i.e. the cells) to other locations of the spreadsheet will
allow to encrypt another block of information (64 bits in TEA and 128 in
AES). This can be used to encrypt several blocks of information in the same
spreadsheet. Later on Section 5.2 we analyze the amount of information that
can be encrypted using a single spreadsheet.

4.2. Stealing Information With a Spreadsheet Cipher

If the spreadsheet application is trusted, which is one of our assumptions,
it will mean that its use is required to perform business-related activities.
Then, the required knowledge of the application to carry out the attack can be
taken for granted by all employees enabled to execute it. Employees that want
to steal information through this method will only require temporary access
to the information. As shown by Moore et al. (2009), most employees (74% of
analyzed cases) steal information they have direct access to. Therefore, that
access can also be taken as granted. In the following, we outline the steps
(Algorithm 1) to be performed by a malicious employee to steal information
using a cipher spreadsheet.

To decrypt the stolen information, the malicious employee would have to
copy the encrypted cell values to the corresponding cells in the decryption
sheet, using the same password used to encrypt the information. If the in-
formation was transformed (text to number) prior to encryption, the reverse
transformation should be applied on the obtained cell values.
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Algorithm 1 Steps to steal sensitive information using a cipher spreadsheet
1. Open or import the file with sensitive information.

2. Disable the version control mechanism.

3. Download and open the cipher workbook file using the trusted application (i.e.
Microsoft Excel).

4. If the clipboard is being controlled by the DLP solution

(a) Copy the cipher cells into the sensitive information file.
(b) Write the password in the corresponding cells.
(c) Reference the cells whose values are to be encrypted in the cipher plaintext

cells.

5. If the clipboard is not being monitored

(a) Write the password in its corresponding cells.
(b) Copy the values from the sensitive cells to the cells referencing the plaintext

cells values.

6. Copy the ciphertext values or export them to a new file. As the information being
copied is meaningless, no alert will be raised.

7. Transfer the file outside the organization through any of the available means (net-
work, removable drive, etc.).

8. Delete the cipher workbook file and the cipher cells from the sensitive workbook
(if they were copied).

5. Evaluation

We next discuss some aspects relative to the security and suitability of the
proposed evasion technique from the point of view of the malicious insider.
To obtain experimental proof of our evasion technique, we have tested our
approach against a commercial DLP solution.

5.1. Security Analysis

In order to analyze the security of the proposed DLP evasion technique,
we propose the following scenario. A disgruntled employee decides to steal
sensitive information from an organization. The security policy of the orga-
nization states that sensitive files cannot leave the organization’s boundaries
by any means (printer, removable drives, network, etc.). To implement the
security policy, the organization deploys a DLP solution that execute mecha-
nisms to automatically detect sensitive information files and logs all attempts
to extract sensitive information by any of the means defined in the security
policy. Additionally, the DLP solution allows to define a set of trusted appli-
cations. Only those applications can be executed on workstations with access
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to sensitive information. Common applications such as the Microsoft Office
suite are included in the trusted application list. For them, the installed DLP
solution only controls actions that can directly produce an information leak,
such as for example attempting to print a file or emailing a document).

Let W = w1, w2, . . . , wn be a set of sensitive information, where wi can
be described with the regular expression expw. Let C = c1, c2, . . . , cm be
the implementation of a cipher in spreadsheet form where ci codifies part of
the cipher Cipher(x, k). Both wi and ci are composed by a set of symbols
that are accepted as content for a spreadsheet cell. Let Sensitivew(x) be a
function that returns true if x conforms to expw and false otherwise. To
simplify we can assume that Sensitivew(x) is called each time a spreadsheet
cell is going to be copied into the clipboard. If Sensitivew(x) returns true,
x can not be copied into the clipboard and the incident is logged.

As all operations are performed within a trusted application, we do not
consider the existence of several trusted applications being used at the same
time. If a malicious insider copies C into the clipboard, Sensitivew(x) will
be called m times returning false for all of them. When C is pasted into the
spreadsheet containing W , operations defined in C will be performed using W
as input. This will result in W ′ = w′1, w

′
2, . . . , w

′
n, where w′i = Cipher(wi, k).

Depending on the specific transformations performed by Cipher(x, k), the
result of Sensitivew(w′i) will be false, enabling the malicious insider to copy
W out and send it outside the organization. In the case of most commercial
DLP solutions, Sensitivew(x) checks x against a set of defined regular ex-
pressions and keywords. Therefore, Cipher(x, k) transformations have two
requirements.

First, k must be required to obtain back x from w. If Cipher(x, k) can be
easily reversed, he might be able to evade the restrictions imposed by the DLP
solution, but transformations could be reversed easily and new definitions of
Sensitivew(x) will be able to detect the transformed information. In our
case, Cipher(x, k) implements both TEA and AES. The difficulty to obtain
back the original information is (for both algorithms) orders of magnitude
higher than any other simple transformation that could render Sensitivew(x)
unusable. To the best of our knowledge there is no publicly available attack
on the full version of AES 128 that reduces the complexity of finding the
encryption key to significantly less than a brute force attack (Dobbertin et al.,
2005). In the case of TEA, Kelsey et al. (1997) discovered that TEA suffers
from equivalent keys. This means that each TEA key has 3 equivalent ones,
reducing its complexity to 2126. Other attacks exist, but still their practical
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implications in our setting are very limited. Nevertheless, as the key has
to be introduced in the same spreadsheet, implementation attacks could be
used against our proposal. However, to be able to implement such attacks,
it would be necessary to detect that this kind of evasion is being used. This
is addressed in Section 6.2.1.

Second, it should generate a w that does not match with any of the
defined regular expressions or keywords. This is done by adding an additional
transformation at the end of the ciphering process. This transformation
ensures that the encrypted data will not match any sensitive data pattern
or keyword. In the AES and TEA spreadsheet implementations, dots are
introduced between each 3 digits to avoid any possible n digit pattern.

5.2. Performance Analysis

Implementing bitwise operations through standard decimal arithmetic
functions increases the computational complexity of the cipher implemen-
tation. While in usual software implementations basic bitwise operations
can be translated into a single line of assembly code, in our implementation
it requires multiple operations. We have compared the spreadsheet imple-
mentations of TEA and AES with standard C implementations. In our test
we encrypted up to 1 Megabit of information with each implementation.
During tests, the machine was not executing any other task. To obtain aver-
age values, we repeated each encryption procedure 24 times. Average results
show that the spreadsheet implementations are significantly (orders of mag-
nitude) slower than C implementations (Table 1). In the case of AES, the
Excel implementation is very inefficient, mostly due to the MixColumns step.
Therefore, a spreadsheet application does not seem the optimal way to im-
plement a cipher, and it is suitable only for small amounts of information or
a proof of concept implementaton.

In terms of memory space, our TEA implementation requires 70 cells to
encrypt 64 bits of information: 2 as plaintext input, 4 as password input and
64 to implement TEA. With AES we require 704 to encrypt 128 bits: 16 as
plaintext input, 16 as password input, 512 to implement constants and 160
to implement AES operations. To encrypt more blocks, the plaintext and
implementation cells must be copied. Therefore, with our current approach it
is theoretically possible to encrypt up to 240÷66 = 16659267087 bits for each
available sheet (up to 1.93 GB) with TEA and up to 240÷176 = 6247225157
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Data Excel AES C AES Excel TEA C TEA
128 bits 0.23 sec. < 1 ms. 0.29 sec. < 1 ms.
256 bits 0.38 sec. < 1 ms. 0.33 sec. < 1 ms.
512 bits 0.66 sec. < 1 ms. 0.39 sec. < 1 ms.
1 Kb 1.35 sec. < 1 ms. 0.47 sec. < 1 ms.
2 Kb 2.70 sec. < 1 ms. 0.70 sec. < 1 ms.
4 Kb 5.28 sec. < 1 ms. 1.34 sec. < 1 ms.
8 Kb 10.53 sec. 1.6 ms. 2.68 sec. < 1 ms.
16 Kb 20.95 sec. 3 ms. 5.34 sec. < 1 ms.
32 Kb 42.23 sec. 6 ms. 10.61 sec. < 1 ms.
64 Kb 83.79 sec. 12 ms. 21.09 sec. < 1 ms.
128 Kb 171.19 sec. 25 ms. 42.22 sec. < 1 ms.
256 Kb 333.22 sec. 50 ms. 84.47 sec. 1.6 ms.
512 Kb 673.75 sec. 0.1 sec. 168.97 sec. 3.4 ms.
1 Mb 1343.26 sec. 0.2 sec. 335.72 sec. 6.6 ms.

Table 1: Performance comparison of spreadsheet and C implementations to encrypt up to
1 Megabit of information (average of 24 runs)

bits (up to 0.72 GB)3 with AES.

5.3. Bypassing a Commercial DLP Solution

We have tested our method against a commercial DLP solution from
TrendMicro (i.e. LeakProof v5.04). LeakProof is composed by a server and
a workstation agent. The LeakProof server is used by administrators to scan
workstations for sensitive information, define security policies, analyze alerts
sent by LeakProof agents and generate reports. The LeakProof Agents crawl
the system for sensitive information. Additionally they monitor and control
all leakage vectors (removable drives, network, etc.). The current version of
LeakProof is only able to control Windows workstations.

We built a simulated organization with several workstations controlled
by a LeakProof Server. LeakProof uses the concepts of digital asset and
company policy to establish a DLP configuration. Digital assets are defined
through the use of keywords and regular expressions. The tested version of
LeakProof includes 21 keywords and 36 regular expressions that allow to iden-
tify possible sensitive files such as source code files, social security numbers,

3Excel 2007 allows a maximum 220 × 220 cell spreadsheets
4TrendMicro LeakProof v5. http://us.trendmicro.com/us/products/enterprise/

data-loss-prevention
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Figure 2: LeakProof v5.0 alerts when trying to copy sensitive cells into the clipboard.

etc. We generated personal data records files5, which LeakProof correctly
identified as sensitive. Company policies are built to control digital assets
that are transmitted through specific channels. The server company policy
was configured with compliance templates that are built in the LeakProof
Server. Specifically, templates to comply with PCI-DSS (PCI Securty Stan-
dards Council, 2010), California Senate Bill 1386 of 2002 (SB 1386) and
the Gramm-Leach-Bliley Act of 1999 (GLBA) were enabled. Additionally,
a compliance template to avoid source code extraction and US personally
identifiable information (including social security numbers) were active.

Our tests involved three different methods to try to leak information.
First, we tried copying sensitive information from one file to another through
the clipboard. Secondly, we tried to mail a sensitive file using a webmail
account accessed though HTTPS. Finally, we used our evasion technique to
transform the sensitive information. Finally, we tried to send the transformed
information using the same webmail account.

Copying sensitive information into the clipboard was detected by the
LeakProof Agent, as shown in Figure 2. During our second test, sending
a sensitive file using a webmail account, LeakProof did not allow us to at-

5To generate fake personal records, we used an Excel plugin available at http://www.
codeforexcelandoutlook.com/wkbks/RandomDataGenerator\_unlocked2007.xlam
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tach the sensitive file (Figure 3). All these operations were logged into the
LeakProof server and also reported to the security administrator through his
email account. Other operations such as copying to a removable drive and
printing the document were also forbidden and logged.

Figure 3: LeakProof v5.0 alerts when trying to send a sensitive file by email.

Using one of our spreadsheet ciphers and the previously defined Algorithm
1, we were able to steal social security numbers that we were not able to
leak by other means. Figure 4 shows the resulting file, encrypted using the
TEA spreadsheet implementation, which we were able to transfer outside the
organization using the previously forbidden leakage procedures.

In our case, as the clipboard is actively monitored by LeakProof, we
copied the cipher cells into the sensitive file spreadsheet. The encrypted
information did not match any of the patterns defined into LeakProof policies
(see Table 2).

SSN Pair LeakProof Search Pattern ExcelTEA Result
609-41-9684, 707-56-1016 [ˆ \d-](\d{9}|\d{3}-\d{2}-\d{4})[ˆ \d-] 2144548156, 3313616163

Table 2: Example of the transformation performed on a social security number to bypass
LeakProof detection mechanism.

To leak other sensitive information such as names, address, etc., their
values would need to be translated into numeric format using the CODE()
function.
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Figure 4: Social Security Numbers encrypted using the TEA spreadsheet implementation.

6. Discussion

The presented attack allows malicious insiders to bypass DLP solutions
and leak information from an organization. Nevertheless, a spreadsheet im-
plementation of a cryptographic algorithm involves some restrictions that
do not apply over specific purpose cryptographic applications. This section
analyzes how these restrictions affect the feasibility of this method to evade
information. Additionally, we propose several countermeasures that could be
implemented on current DLP software to reduce the risk associated with the
presented attack.

6.1. Feasibility of current DLP evasion technique

Executing encryption algorithms over a spreadsheet application enables
the evasion of restrictions imposed by DLP solutions. Nevertheless, this kind
of implementation has two drawbacks that may affect its feasibility under a
real scenario.

Firstly, the spreadsheet implementation is computationally inefficient. As
shown in Section 5.2, the spreadsheet implementation of a cipher is orders
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of magnitude slower than a standard C implementation of the same cipher.
Additionally, as opposite to other cipher implementations, the memory re-
quirements increase with the amount of data to encrypt: a block of cipher
implementation cells is required for each block the user wants to encrypt in
the same algorithm run. Encrypting large amounts of information causes
an overhead on the spreadsheet application that could be easily identified as
abnormal behaviour (see Section 6.2.3).

Secondly, the cipher spreadsheet is only able to encrypt information stored
in spreadsheet cells. As these cells only allow to introduce textual informa-
tion, binary information such as images or other file formats that can not be
easily represented by readable characters cannot be encrypted. Encrypting
such information would require the usage of additional applications to encode
the binary information into cell allowed characters. This fact, together with
the computational restrictions of the cipher spreadsheet, makes the presented
evasion technique suitable only for small amounts of data such as personal
data records or small text fragments.

6.2. Countermeasures to the proposed DLP evasion technique

Although the proposed attack enables bypassing current DLP solutions,
there exist several techniques and mechanisms that could be used to detect
the usage of the proposed technique. The following subsections discuss some
of them.

6.2.1. Detecting the presence of cipher spreadsheets
Both the Windows registry and UNIX system logs store system status

information and application messages sent to the operating system. (Zax
and Adelstein, 2009; Baek et al., 2008) proposed the use of registry entries
and system logs to detect malicious insiders and suspicious applications af-
fecting information leakage threats. Microsoft Excel generates entries on the
Windows registry keys that could be used as forensic artifacts. We used Sys-
tracer6 to obtain the changes made to the Windows registry after successfully
leaking sensitive information. The only change observed was on the following
key:

HKEY_CURRENT_USER\\Software\\Microsoft\\Office\\12.0\\Excel\\File MRU

6Systracer 2.0 available at http://www.blueproject.ro/systracer
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This registry key, which stores the name of the recent opened files, changed
to add the name of the file where the cipher was placed. That name is not
enough to detect a malicious or suspicious behavior, as it can be changed
easily by the malicious insider.

Another approach to detection would be to consider the cipher spread-
sheets as some sort of malware. After all, the main purpose of the cipher
workbook file is arguably to steal information. Antivirus and Intrusion De-
tection Systems may be adapted to detect the transmission or usage these
kinds of spreadsheets on a computer system. Regarding the AES implemen-
tation, its S-Boxes could be used as a signature to detect the presence of
the Excel cipher implementation. A new IDS rule could be written to detect
such content into incoming network traffic.

Nevertheless, our TEA and AES implementations are just an example.
Virtually thousands of different files with the same purpose can be created
and used easily, as well as other completely different implementations of other
ciphers. This implies that it will be quite easy to develop new alternatives
unknown to antimalware software that could be employed without any risk
of being detected. However, these kinds of spreadsheets share some common
characteristics that could facilitate their detection, such as the usage of a
short set of functions and the high amounts of nested formulas required to
steal practical amounts of information.

6.2.2. Encrypted data detection

DLP solutions inspect contents and file metadata as well as network pack-
ets to detect sensitive information leaving the organization (Lawton, 2008;
Baek et al., 2008). One central property of modern ciphers is the random-
ness of the ciphertext they produce (Soto, 1999). Randomness tests could
be used to detect encrypted content being transferred out of the organiza-
tion. However, spreadsheet encrypted information could be transformed to
reduce its apparent redundance or transmitted wrapped under file formats
such as PDF, DOC, etc. This should be taken into account when designing
encryption data detectors.

Using the software “Glavlit” (Schear et al., 2007), any file to be sent
outside the organization must pass through a warden. A specific warden
could be created to detect files produced with our cipher spreadsheets, usu-
ally Microsoft Excel or other format files with random contents. However,
other innocent-looking information could be easily introduced into the file to
confuse the warden.
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6.2.3. Detection of abnormal behavior

The use of our cipher spreadsheet requires the malicious insider to follow
a specific procedure. All these actions are done at the application level: open-
ing a sensitive file, performing some actions on it and storing the information
in a new file. The generation of fine grained in-application log data could
help to detect these kinds of malicious insider attacks. Events such as “user
opens sensitive file”, “sensitive cells are used as input for certain cells”, etc.
give accurate information about the user behavior. Data mining techniques
could be used over this data to build information leakage detectors. A similar
approach was proposed by Schonlau et al. to detect malicious insiders using
running processes (Schonlau et al., 2001).

Additionally, the overhead that the cipher spreadsheet implementations
produce on the system when encrypting (Section 5.2) could be used as a
hint to detect a malicious insider. Nevertheless, this depends on the amount
of information to encrypt. Depending on the organization’s activities, these
variations can also be attributed to other legitimate Excel operations or other
user activities, such as web navigation, etc.

6.2.4. Security models to avoid data leaks

Implementing application level restrictions on specific user actions con-
cerning sensitive information may help to avoid these evasion technique, i.e.
forbid to reference a cell whose value is a piece of sensitive information. In
this regard, the usage of Enterprise Digital Rights Management Solutions (Yu
and Chiueh, 2004) would likely defeat our attack. These solutions should
be correctly configured through the security policy. Additionally, authors
should not have control of their own documents, as they may simply reduce
the security level of the document to steal it.

Finally, the usage of multilevel security models (Section 2) could be use-
ful to forbid information leakage using our evasion technique. In the Bell-
LaPadula model, when the malicious insider opens the sensitive information
document he is no longer able to create non sensitive documents. Never-
theless, some work is still needed in order to adapt these kind of models to
commercial environments (Rubinovitz, 1994).

Other techniques such as process coloring, could be useful to trace back
the origin of the leak (Jiang et al., 2008). If an application opens a sen-
sitive information file, it propagates its color (a unique identifier) to other
opened documents. DLP solutions could be configured to deny transmission
of certain colors outside the organization.
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7. Conclusions and future work

Information leakage is one of the more rapidly growing threats that orga-
nizations face nowadays. The work presented in this paper demonstrates that
trusted applications may entail a threat to the confidentiality of sensitive in-
formation. This threat has not been addressed by current DLP systems and
could allow malicious insiders to leak sensitive information by using trusted
applications. Specifically, we show how to implement a standard cipher in a
simple and widely used spreadsheet application. As actions performed within
the trusted application environment are not controlled, information can be
encrypted and sent outside the organization without being detected.

Our approach could be used by malicious insiders to steal information
from organizations already protected by malicious insider detection or DLP
systems. We have tested our approach against a commercial DLP solution
and demonstrated that it is able to extract sensitive information from a
simulated organization without being detected. Additionally, we have also
pointed out some of the mechanisms that could be implemented on current
DLP software to detect and avoid our attack.

Our future work moves in various directions. We are working towards
implementing more cryptographic algorithms to validate our approach. Ad-
ditionally, we are also exploring the use of steganographic techniques by
means of trusted applications, in such a way that the transformed informa-
tion can be part of an innocuous-looking message. This will allow it to pass
unnoticed by a warden who is supossed to vet all information exiting an or-
ganization, as in (Schear et al., 2007). In terms of countermeasures, we are
looking forward to further develop and implement the necessary mechanisms
to take into account actions performed inside trusted applications. Advances
in this direction would enable to protect against this kind of DLP evasion
technique.
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