
Android	–	Collusion	Conspiracy	
	
Authors:	Igor	Muttik,	Jorge	Blasco,	Tom	Chen,	Harsha	K.	Kalutarage	and	Siraj	A.	Shaikh	
	
Abstract:	We	 describe,	 analyze	 and	 demonstrate	 how	 a	 set	 of	 Android	 apps	 can,	 when	
working	together,	circumvent	the	current	Android	security	model.	The	problem	is	that	a	set	
of	colluding	apps	may	be	able	to	perform	actions	beyond	the	limitations	set	by	the	OS.	These	
capabilities	can	easily	go	unnoticed	because	only	individual	app’s	permissions	are	shown.	We	
demonstrate	 the	 scale	 of	 the	 problem	based	on	 analyzing	 permissions	 of	 prevalent	 apps.	
Colluding	 apps	 create	 a	 problem	 for	 both	 users’	 privacy	 and	 security;	 we	 demonstrate	
examples	of	colluding	app	sets:	one	leaking	sensitive	user	data	and	a	“distributed	botnet”.	
Finally,	we	discuss	solutions	to	the	problem.	
	

Introduction		
	
The	Android	security	model	was	designed	to	protect	users,	data,	applications,	the	device	and	
the	network	from	security	threats.	By	default,	any	third	party	app	is	treated	as	untrusted	by	
the	 OS	 and	 runs	 inside	 a	 sandbox	 that	 isolates	 it	 from	 any	 sensitive	 resource	 or	 other	
applications.	Access	to	sensitive	system	resources	is	protected	by	the	OS	permissions	system.	
If	an	application	wants	to	access	a	sensitive	resource,	it	must	include	a	permission	declaration	
inside	the	AndroidManifest.xml	file.	When	the	application	is	being	installed	(in	a	device	
running	Android	versions	below	6.0),	the	system	will	ask	the	user	to	accept	the	permissions	
used	by	the	app	before	proceeding	with	the	installation.	At	this	point,	the	user	must	accept	
or	deny	all	permissions	the	app	is	requesting.	Starting	with	Android	6.0	applications	can	ask	
for	permissions	at	runtime	and	users	have	the	choice	of	granting	or	denying	each	permission.		
	
Apps	in	the	sandbox	can	communicate	with	other	apps	via	standard	Unix	mechanisms	(files,	
sockets,	etc.)	or	the	Inter-Process	communication	(IPC)	mechanisms	provided	by	the	Android	
OS.	 Generally	 speaking,	 apps	 accessing	 Android	 IPC	mechanisms	 do	 not	 need	 to	 request	
specific	permissions	unless	one	of	the	apps	that	takes	part	in	the	communication,	requires	
them.	This	must	be	enforced	by	developers	and	is	intended	to	avoid	apps	exposing	protected	
resources	to	other	apps	that	have	not	requested	access	to	those	same	resources.	An	example	
of	this	is	the	usage	of	the	Phone	app.	Other	apps	can	request	(by	using	Intents)	the	Phone	
app	 to	 start	a	phone	call.	When	 this	happens,	 the	phone	app	opens	and	starts	a	call	 to	a	
number	specified	in	the	Intent.	As	the	access	to	this	resource	is	protected,	apps	requesting	
the	 Phone	 app	 to	 start	 phone	 calls	 need	 to	 declare	 the	
“android.permission.CALL_PHONE”	permission.	
	
The	Android	OS	does	not	check	if	an	app	that	is	accessing	a	permission-protected	resource	
through	another	app	has	itself	requested	that	permission.	This	task	is	left	to	the	developer	of	
the	app	that	is	exposing	the	access	to	the	permission-protected	resource.	This	lack	of	control	
can	be	used	by	apps	to	get	access	to	sensitive	resources	they	are	not	supposed	to	have.	In	
this	scenario,	applications	can	“conspire”	using	communication	channels	to	aggregate	their	
permissions	and	perform	malicious	actions.	In	addition	to	this,	malware	analysis	services	as	



well	 as	 security	 researchers	 normally	 focus	on	 single	 apps.	 Therefore,	 they	 cannot	detect	
when	malicious	actions	are	distributed	over	several	apps	installed	on	a	device.		
	
In	this	work	we	describe,	analyze	and	demonstrate	how	a	set	of	Android	apps	can	break	the	
current	Android	security	model.	The	rest	of	the	paper	 is	structured	as	 follows.	 In	the	next	
section	we	define	the	concept	of	application	collusion	and	describe	the	privacy	and	security	
implications	of	colluding	apps.	In	section	three,	we	demonstrate	the	threat	created	by	these	
apps	with	two	app	sets	that	affect	different	system	protected	resources.	In	section	four,	we	
describe	 a	 preliminary	 analysis	 of	 the	 most	 prevalent	 apps	 from	 Google	 Play	 and	 other	
markets.	Finally,	we	discuss	how	app	collusion	can	be	detected	and	approaches	to	improve	
protection	at	both	device	and	market	level.		
	

Application	Collusion		
	
The	origin	of	the	colluding	application	problem	can	be	traced	back	to	the	confused	deputy	
attack	(Hardy,	1988).	This	attack	can	happen	when	an	application	provides	a	public	interface	
to	access	some	restricted	resources.	Under	this	circumstances,	other	application	could	use	
that	 interface	 to	 abuse	 the	 restricted	 resources.	 The	 application	 providing	 access	 to	 the	
protected/restricted	 resource	 is	 called	 a	 confused	 deputy.	 In	 Android,	 confused	 deputy	
attacks	 can	 happen	 in	 a	 form	 of	 permission	 re-delegation	 attacks	 (Porter	 Felt,	 Wang,	
Moshchuk,	Hanna,	&	Chin,	 2011).	 A	 careless	 developer	may	 expose	 permission-protected	
resources	 when	 publicly	 enabling	 the	 component	 that	 accesses	 those	 resources	 for	
communication	from	other	applications	through	IPC.		
	
The	 first	 documented	 example	 of	 intentional	 permission	 re-delegation	 is	 Soundcomber	
(Schlegel,	Zhang,	Zhou,	Intwala,	Kapadia,	&	Wang,	2011).	This	proof-of-concept	malware	is	
composed	of	 two	apps	 (Figure	1).	 The	 first	 app,	which	 requires	only	 access	 to	 the	device	
microphone	(RECORD_AUDIO	permission),	listens	for	calls	to	telephone	banking	services	and	
extracts	 the	 digits	 pressed	 by	 the	 user.	 The	 second	 app	 receives	 the	 extracted	 sensitive	
information	 and	 sends	 it	 to	 a	 remote	 server	 (INTERNET	 permission).	 Soundcomber	 uses	
Android	 overt	 (IPC)	 and	 covert	 channels	 (file	 locks,	 settings	 modifications,	 etc.)	 as	
communication	channels.	
	

	
Figure	1:	Apps	comprising	the	‘Soundcomber’	proof	of	concept	malware.	The	Collector	access	the	microphone	and	sends	data	
to	the	Deliverer	using	overt	or	covert	channels.	The	deliverer	uses	the	INTERNET	permission	to	extract	the	information	from	
the	device	

	
Definition	
	
The	Soundcomber	example	shows	the	difference	between	app	collusion	and	confused	deputy	
attacks.	 	 In	 application	 collusion	 the	 exposure	 of	 the	 sensitive	 resource	 is	 intentional.	
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Confused	 deputies	 (through	 permission	 re-delegation)	 occur	 only	 when	 a	 programmer	
accidentally	creates	a	vulnerable	app.	Therefore,	application	collusion	can	be	defined	as	the	
act	of	cooperation	between	two	or	more	apps	to	share	their	access	to	protected	resources	so	
they	can	execute	a	potentially	harmful	action	which	they	could	not	perform	separately	with	
their	own	privileges.		
	
	
Misconceptions	
	
The	 Soundcomber	 example	 and	 other	 works	 that	 have	 addressed	 the	 problem	 of	 app	
(Marforio,	Francillon,	&	Capkun,	2011)	(Bugiel,	Davi,	Dmitrienko,	Heuser,	Sadeghi,	&	Shastry,	
2011)	have	focused	only	on	scenarios	where	colluding	apps	are	used	for	information	theft.	In	
this	work	we	show	how	collusion	is	not	only	restricted	to	information	theft	by	demonstrating	
a	botnet	client	distributed	across	several	apps.			
	
Another	 relevant	aspect	of	 collusion	 is	 its	differentiation	 from	collaboration	and	confused	
deputies.	As	an	example,	a	camera	app	usually	saves	pictures	on	external	storage	of	a	device.	
Photo	sharing	apps	read	photos	from	the	external	storage	and	upload	them	to	the	Internet.	
Although	this	behavior	is	benign,	as	the	user	has	given	consent,	the	actions	of	the	camera	app	
(confused	deputy)	could	be	used	by	a	malicious	app	to	extract	the	photos	from	the	device.	In	
a	similar	way,		a	malicious	camera	app	could	send	all	the	pictures	taken	to	another	colluding	
app	for	extraction..	Distinguishing	collaboration	from	collusion	in	this	case,	is	a	challenging	
task,	as	mentioned	by	other	researchers	(Chin,	Porter,	Greenwood,	&	Wagner,	2011),	(Elish,	
Yao,	&	Ryder,	2015).	It	may	boil	down	to	determining	whether	the	photos	–	in	this	example	–	
were	left	accessible/unencrypted	by	mistake	or	deliberately.	
	
Communication	channels	
	
The	Android	OS	offers	a	wide	range	of	communication	options	that	enable	apps	to	cooperate	
and	 share	 information.	 Colluding	 apps	 can	 use	 these	 to	 communicate	 and	 facilitate	 their	
malicious	actions.	To	increase	stealthiness	against	security	software	that	may	be	monitoring	
these	channels,	colluding	apps	can	also	establish	covert	channels	by	exploiting	the	OS	API	calls	
and	information	 leaks.	This	section	provides	an	overview	of	the	overt	and	covert	channels	
available	in	the	Android	OS.	
	
Overt	Channels	
	
The	Android	OS	supports	different	channels	to	transfer	information	between	apps.	Each	of	
these	were	designed	to	address	specific	app	interaction	needs:	
	

• Intents	 are	messages	 used	 to	 request	 actions	 from	 other	 application	 components	
(Activities,	Services	or	BroadcastReceivers).	These	can	belong	to	the	same	or	different	
apps.	 There	 are	 two	 types	 of	 intents:	 explicit	 and	 implicit.	 Explicit	 intents	 target	
specific	 activities	 or	 services.	 Implicit	 intents	 target	 generic	 actions	 that	 can	 be	
performed	by	many	different	activities	(send	a	message,	open	a	web	link,	etc.)	If	the	
intent	launches	a	new	activity,	the	foreground	activity	is	placed	in	the	background	and	
the	 activity	 specified	 by	 the	 intent	 is	 shown	 to	 the	 user.	 A	 service	will	 run	 in	 the	



background	with	no	user	interface	and	will	deliver	updates	to	the	activities	that	are	
using	it.	Intents	can	also	be	captured	by	BroadcastReceivers	if	sent	accordingly.	Code	
caption	1	shows	the	code	required	to	send	information	to	another	activity,	service	and	
broadcast	receiver	using	different	kinds	of	Intents.		

// Explicit Intent creation to launch ActivityB 
Intent i1 = new Intent(this, ActivityB.class); 
startActivity(i1); 
// Explicit Intent creation to launch ServiceB 
Intent i2 = new Intent(this, ServiceB.class); 
startService(i2); //bindService(i2) could also be used 
// Implicit intent launch code 
Intent i = new Intent(); 
i.setAction(“myapp.action.send_info”); 
i.putExtra(Intent.EXTRA_TEXT, "Some text to send"); 
sendBroadcast(i); 

Code	caption	1:	Code	required	to	send	information	via	different	kinds	of	intents	

Activities,	services	and	broadcast	intents	declare	the	intents	which	they	can	handle	by	
declaring	a	set	of	IntentFilters.	For	activities	and	services,	intent	filters	must	be	
declared	 in	 the	 app	manifest	 XML	 file	 (Code	 caption	 1Code	 caption	 2).	 Broadcast	
receivers	can	also	register	their	intent	filters	programmatically	during	runtime.		
<activity android:name="ActivityC"> 
     <intent-filter> 
       <action android:name="android.intent.action.SEND"/> 
        <category android:name="android.intent.category.DEFAULT"/> 
       <data android:mimeType="text/plain"/> 
    </intent-filter> 
</activity> 

Code	caption	2:	Example	Intent	filter	declared	for	an	example	Activity	in	the	app	manifest	

For	 security	 reasons,	 Android	 services	 cannot	 be	 accessed	 unless	 the	 tag	
‘android:exported”	is	set	to	true	in	the	app	manifest.		

• Content	Providers	are	used	 in	Android	to	transmit	structured	data	across	different	
apps.	Content	providers	store	information	in	one	or	more	tables,	in	a	similar	way	as	
relational	databases	do.	Apps	access	data	of	content	providers	using	ContentResolver	
objects.	 They	offer	methods	not	only	 to	 read	data,	but	also	 to	update,	 create	and	
delete	information	from	the	content	provider	object	offered	by	the	other	app.	Apps	
requiring	 read	 or	 write	 access	 to	 content	 providers	 must	 declare	 necessary	
permissions	in	their	manifest	file	(if	the	content	provider	requires	them).	For	instance,	
an	app	that	wants	to	access	the	contact	list	of	a	user	(Code	Caption	3)	will	need	to	
declare	the	READ_CONTACTS	permission	in	the	manifest	file.		
Cursor c = null; 
   c = getContentResolver().query( 
   ContactsContract.Data.CONTENT_URI, // URI of the contacts table  
   mProjection, // The columns to return for each row 
   mSelectionClause, // null, or variable to perform matching in each row.  
   mSelectionArgs, // Either empty, or the value to match 
   mSortOrder); // The sort order for the returned rows 

Code	caption	3:	Code	required	to	execute	queries	over	the	content	provider	

• External	 Storage	 is	 a	 specific	 Android	 storage	 option	 available	 in	 Android	 devices	
through	an	USB	connection,	SD	card	or	even	non-removable	storage.	Apps	accessing	
the	external	storage	need	to	declare	the	READ_EXTERNAL_STORAGE	permission.	Apps	
declaring	the	WRITE_EXTERNAL_STORAGE	can	write	and	read	from	external	storage.	
Files	on	external	storage	can	be	accessed	using	common	File	access	API.		



• Shared	Preferences	is	an	OS	feature	that	allows	apps	to	store	key-value	pairs	of	data.	
Its	purpose	is	to	be	used	to	store	preferences	information.	Although	it	is	not	intended	
for	inter-app	communication,	apps	can	use	key-value	pairs	to	exchange	information	if	
proper	permissions	are	defined	when	accessing	and	storing	data	(before	Android	4.4).	
Code	caption	4	shows	how	to	save	information	into	shared	preferences,	so	it	can	be	
read	by	other	apps.		

SharedPreferences sp = 
getSharedPreferences("PrefsFile",MODE_WORLD_READABLE); 
SharedPreferences.Editor editor = sp.edit(); 
editor.putString("key", "value"); 

Code	caption	4:	Code	required	by	an	app	to	write	a	world	readable	preference	file	

Code	caption	5	shows	the	code	required	to	read	the	same	information	from	another	
app.	This	code	would	work	on	any	Android	device	below	version	4.3.	

Context otherAppsContext = createPackageContext("com.other.package.example", 0); 
sp = otherAppsContext.getSharedPreferences("PrefsFile",  MODE_WORLD_READABLE); 
String data = sp.getString("key","nothing"); 

Code	caption	5:	Code	required	to	read	data	from	a	preference	file	located	in	other	app	package	

Covert	Channels	
	
Covert	channels	take	advantage	of	some	of	the	APIs	or	features	offered	by	the	OS	to	enable	
communication	between	processes.	There	is	no	formal	method	to	obtain	all	covert	channels	
that	may	exist	 in	a	computer	system.	Examples	of	Android	covert	channels	 include:	 	audio	
settings	(they	can	be	read	and	modified	without	permissions);	broadcast	events	triggered	by	
setting	 changes;	 File	 locks;	 process	 enumeration;	 Unix	 socket	 discovery;	 amount	 of	 free	
RAM/storage	 space	 and	 CPU	 utilization	 among	 others	 (Marforio,	 Ritzdorf,	 Francillon,	 &	
Capkun,	2012)	(Schlegel,	Zhang,	Zhou,	Intwala,	Kapadia,	&	Wang,	2011).	Table	1		provides	a	
summary	of	some	of	these	channels	and	some	keywords	that	can	be	used	to	identify	them	
through	static	analysis.		
	
Table	1:	Non-exhaustive	list	of	covert	channels	and	keywords	to	identify	their	usage	

Covert	Channel	 Colluding	Role	 Location	 Keywords	

Audio	Settings	
Sender	 Java	

Context.AUDIO_SERVICE 
adjustStreamVolume 
adjustSuggestedStreamVolume 
adjustVolume 

Receiver	 Java	 Context.AUDIO_SERVICE 
getStreamVolume  

Settings	
Broadcast	

Sender	 Java	 Context.AUDIO_SERVICE 
setVibrateSetting  

Receiver	 Java	or	Manifest	 RINGER_MODE_CHANGED  

Wake	Lock	
Sender	 Java	

Wakelock  
acquire 
WakefulBroadcastReceiver  

Receiver	 Java	 ACTION_SCREEN_ON  
ACTION_SCREEN_OFF  

File	Lock	 Sender	 Java	
FileLock  
lock  
release  

Receiver	 Java	 isValid  

Proc.	
Enumeration	

Sender	 C	
fork  
pthread  
create  

Receiver	 C	 proc  



Manifest	 GET_TASKS  

Java	 ActivityManager  
getRunningServices  

Socket	
Enumeration	

Sender	 Java	 Socket  

Receiver	 Java	 Socket  
isClosed  

Free	space	
Sender	 Java	 Not	possible	to	limit	

Receiver	 Java	 StatFs & getAvailableBlocks  
MemoryInfo & availMem  

CPU	Usage	 Sender	 Java	 Not	possible	to	limit	

Receiver	 Java	 Not	possible	to	limit	

	
	

Demonstration	of	App	Sets		
	
Previous	research	on	application	collusion	has	focused	only	on	app	sets	specifically	designed	
to	steal	information.		
	
As	part	of	our	research,	we	have	developed	several	colluding	app	sets	to	demonstrate	broader	
possible	threats.	We	present	two	such	colluding	app	sets.	The	first	one	is	a	colluding	app	set	
that	uses	several	applications	to	steal	information	from	the	user.	This	set	is	different	from	the	
ones	already	present	in	the	literature	as	it	is	comprised	of	three	applications	instead	of	only	
two.	The	second	demonstration	app	set	 is	a	botnet	client	distributed	across	 several	apps.	
Depending	on	the	amount	of	apps	installed	by	the	infected	user,	command	and	control	server	
would	have	access	to	different	bot	functionality	on	the	user	device.		
 
Contact	Extractor	Demonstration	App	Set	
	
This	app	set	is	comprised	of	three	apps	(Table	2).	This	group	sends	the	device's	address	book	
to	a	remote	server.	The	first	app	reads	the	contacts	from	the	address	book.	This	information	
is	shared	with	the	second	colluding	app	via	SharedPreferences	library.	The	second	app	acts	
as	a	message	 forwarder	and	sends	the	received	 information	to	 the	third	app	by	using	 the	
external	storage.	The	third	app	of	the	colluding	set	uses	its	Internet	connection	to	transmit	
gathered	information	to	a	remote	server.	A	graphical	representation	of	these	apps	is	shown	
in	Figure	2.	
	
Table	2:	Summary	of	apps	included	in	the	contact	extractor	demonstration	app	set	

App	Package	 Permissions	 Colludes	with	 Channel	
com.acid.trans	 READ_CONTACTS com.acid.fwgame	 Sh.	Preferences	
com.acid.fwgame	 WRITE_EXTERNAL_STORAGE com.acid.recv2	 Ex.	Storage	

com.acid.recv2	 READ_EXTERNAL_STORAGE 
INTERNET 

	 	

	



	
Figure	2:	Graphical	representation	of	the	apps	part	of	the	contact	extractor	demonstration	app	set	

	
Botnet	Client	Demonstration	App	Set	
	
This	demonstration	group	is	comprised	of	four	apps	(Table	3).	One	of	the	apps	acts	as	a	relay	
receiving	orders	from	a	command	and	control	(C&C)	center.	The	other	colluding	apps	execute	
commands	received	from	the	C&C	depending	on	their	requested	permissions.	The	companion	
apps	are	capable	of	sending	SMS	messages,	stealing	the	device	address	book	and	starting	and	
stopping	tasks.	This	group	uses	BroadcastIntents	as	a	communication	channel	between	
apps.		
	
Table	3:	Summary	of	apps	included	in	the	botnet	client	demonstration	app	set	

App	Package	 Permissions	 Colludes	with	 Channel	

com.acid.weatherapp	 INTERNET 
com.acid.enhancesms	
com.acid.contactmanager	
com.acid.taskmanager	

Intents	

com.acid.enhancesms	 READ_SMS 
SEND_SMS 	 	

com.acid.contactmanager	 READ_CONTACTS com.acid.weatherapp	 Intents	

com.acid.taskmanager	
GET_TASKS 
KILL_BACKGROUND 
_PROCESS 

com.acid.weatherapp	 Intents	

	
	
The	C&C	server	can	be	used	to	transmit	commands	to	the	“Weather”	app.	All	commands	are	
then	forwarded	to	the	respective	companion	app.	If	the	app	is	installed,	the	command	will	be	
executed	via	a	Broadcast	Intent	(Figure	3).	
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Figure	3:	Graphical	representation	of	the	botnet	client	demonstration	app	set	

 

Analysis	of	Prevalent	Market	apps	
 
We	have	performed	a	preliminary	analysis	of	a	dataset	of	more	than	9000	apps	from	the	Intel	
knowledge	 base.	 These	 apps	 are	 classified	 as	 ‘clean’	 .	 This	 is	 confirmed	 by	 both	 their	
prevalence	and	by	Intel	Security.	
	
Most	 of	 the	 existing	 risk-evaluation	 metrics	 for	 apps	 look	 for	 permissions,	 reflection	
capabilities	 and	 presence	 of	 native	 code.	 In	 our	 preliminary	 analysis	 we	 look	 for	 non-
overlapping	 permissions	 and	 inter-app	 communication	 capabilities	 that	 could	 enable	
collusion.		
	
Permission	Analysis	
	
We	have	analyzed	the	conditional	occurrence	of	permissions	available	by	default	 to	 third-
party	apps	from	the	9000	app	dataset.	This	is,	how	many	times	a	permission	px	appears	in	an	
app	when	the	permission	py	is	declared.	This	shows	if	a	permission	is	usually	declared	with	
other	permissions	or	 if	 the	declaration	of	one	permission	reduces	the	possibility	of	having	
others	declared.	
Figure	4	shows	a	color	map	of	the	conditional	occurrence	of	default	permissions	available	to	
third	party	apps.	A	white	coordinate	(value	1)	means	that	every	time	the	permission	py	(in	
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row	y)	appears,	the	permission	px	(in	column	x)	is	also	declared.	A	black	coordinate	indicates	
that	permission	px	never	appears	with	permission	py	in	our	dataset.		
	
	

	
Figure	4:	Color	map	of	conditional	occurrence	of	permissions	given	another	permission.	The	color	at	position	y,x	represents	
the	ratio	of	times	that	permission	of	column	x	appears	everytime	a	permission	of	row	y	appears	on	an	app.	

For	 instance,	 permissions	 in	 rows	 27	 and	 44	 (READ_BOOKMARK_HISTORY	 and	
WRITE_BOOKMARK_HISTORY)	 match	 all	 their	 conditional	 occurrences.	 The	
WRITE_BOOKMARK_HISTORY,	 does	 not	 allow	 reading	 the	 history,	 so	 apps	 that	 want	 to	
manage	bookmarks	must	declare	both	of	them	always.	Seeing	an	app	declaring	only	one	of	
these	permissions	would	be	really	suspicious.		
	
The	analysis	of	the	app	dataset	also	shows	that	Permission	8	(INTERNET),	is	declared	almost	
anytime	another	permission	is	declared,	except	for	a	few	cases	(Table	4).	However,	it	is	not	
declared	 by	 all	 apps.	 Around	 22%	 of	 the	 apps	 that	 declare	 the	 READ_USER_DICTIONARY	
permission	do	not	require	access	to	the	Internet.	Those	apps	could	potentially	collude	with	
other	apps	 that	have	 Internet	access	 to	steal	 the	user’s	dictionary.	A	similar	circumstance	
happens	with	the	access	to	external	storage.	6%	of	the	apps	that	declare	this	permission	do	
not	require	access	to	the	Internet.	
	
	



Table	4:	Conditional	occurrence	values	for	some	of	a	subset	of	the	permissions	analyzed	

	 p8	 p19	 p46	 p62	 p67	 p78	

INTERNET	(p8)	 1	 0	 0.01	 0.91	 0.76	 0	
BIND_INPUT_METHOD	(p19)	 1	 1	 0	 1	 0	 0	
READ_USER_DICTIONARY	(p46)	 0.78	 0	 1	 0.80	 0.78	 0.79	
ACCESS_NETWORK_STATE	(p62)	 0.98	 0	 0.01	 1	 0.79	 0	
WRITE_EXTERNAL_STORAGE	(p67)	 0.94	 0	 0.01	 0.90	 1	 0	
USE_SIP	(p78)	 1	 0	 0	 1	 0.44	 1	

	
	
	
Inter	app	communication	analysis	
	
In	our	preliminary	study,	we	focus	on	external	storage	and	intent-based	communication	only.	
External	 storage	 communication	 is	 detected	 by	 checking	 the	 applications’	 manifest	 files.	
Intent-based	communications	 is	detected	using	the	didfail	 (Burket,	Flynn,	&	Klieber,	2015)		
tool.		
	
Due	to	the	longer	processing	time	required	to	extract	the	inter-app	communication	channels,	
we	 tested	 only	 124750	 random	 pairs	 selected	 from	 the	 clean	 set	 for	 intent	 based	
communications.		
	
Our	collusion	analysis	is	based	on	a	policy-based	model.	We	use	a	predefined	set	of	rules	that	
describes	 the	main	 threats	 created	 by	mobile	malware.	 The	 security	 policy	 is	 taken	 from	
(Enck,	Machigar,	&	McDan,	2009)	and	the	main	rules	are	described	in	Table	5.	
	
Table	5:	Sample	Kirin	Rules	to	mitigate	malware	

Rule	 An	application	must	not	have…	
1	 the	SET_DEBUG_APP	permission	label	
2	 PHONE_STATE,	RECORD_AUDIO	and	INTERNET	permission	labels	
3	 PROCESS_OUTGOING_CALL,	RECORD_AUDIO	and	INTERNET	permission	labels	
4	 ACCESS_FINE_LOCATION,	 INTERNET	 and	 RECEIVE_BOOT_COMPLETE	 permission	

labels	
5	 ACCESS_COARSE_LOCATION,	INTERNET	and	RECEIVE_BOOT_COMPLETE	permission	

labels	
6	 RECEIVE_SMS	and	WRITE_SMS	permission	labels	
7	 SEND_SMS	and	WRITE_SMS	permission	labels	
8	 INSTALL_SHORTCUT	and	UNINSTALL_SHORTCUT	permission	labels	
9	 SET_PREFERRED_APPLICATION	permission	label	and	receive	intents	for	CALL	action		
	
	
Results	
	



Our policy-based	 model	 classified	 marked	 7%	 of	 app	 pairs	 as	 having	 collusion	 potential.	
(Figure	5).	These	figures	may	include	a	lot	of	false	positives.	At	the	moment	we	do	not	inspect	
the	details	of	potential	inter-app	communication.	Therefore,	our	results	do	not	identify	the	
app	pairs	that	might	be	already	colluding,	but	the	ones	with	potential	to	do	it.	As	part	of	our	
future	work,	we	have	started	to	use	the	permission	analysis,	which	is	 less	computationally	
expensive,	 to	 optimize	 the	 pair	 selection	 for	 the	 communication	 analisys,	 which	 is	 more	
costly.	With	this	method	we	aim	to	reduce	the	cost	when	looking	for	colluding	apps,	so	more	
analysis	and	research	efforts	can	be	given	to	the	more	suspicious	subset	of	app	pairs.		
	

	
Figure	5:	Percentage	of	app	pairs	with	collusion	potential	

 

Detecting	App	Collusion	
	
We	have	described	a	possible	emerging	threat	for	mobile	devices	where	applications	collude	
to	achieve	their	goals.	We	have	presented	several	examples	of	collusion	and	a	preliminary	
study	on	publicly	available	apps.	We	show	that	a	significant	percentage	of	apps	show	collusion	
potential.	 Given	 the	 relatively	 small	 amount	 of	 apps	 analyzed	 (in	 comparison	 with	 the	
amounts	of	apps	already	available)	there	 is	still	a	need	to	refine	the	detection	process,	so	
analysis	efforts	can	be	focused	on	those	app	sets	that	are	suspicious.		
	
Some	ways	of	improving	our	preliminary	analysis	would	be	to	filter	our	app	sets	for	those	with	
specific	permissions.	For	instance,	an	app	that	is	missing	the	INTERNET	permission	would	have	
more	 interest	 in	 colluding	 with	 other	 apps	 that	 already	 have	 that	 permission	 granted.	
Additionally,	we	have	focused	our	efforts	in	the	standard	Android	communication	channels.	
Given	that	collusion	is	an	attack	designed	to	overpass	current	security	measures,	it	would	not	
be	 surprising	 if	malware	developers	 spent	more	effort	on	using	 stealthier	 communication	
channels	such	as	covert	SharedPreferences method. 
 

7%

93%

%	of	app	paris	with	collusion	potential	(Total	124750	pairs)

Colluding Non-colluding



The	analysis	of	app	sets	is	a	much	more	complex	and	computationally	expensive	task.	Instead	
of	only	 looking	at	one	app,	 it	 is	also	necessary	 to	 look	 for	other	apps	 that	can	potentially	
collude	 with	 it.	 Given	 the	 high	 number	 of	 Android	 apps	 already	 available	 and	 new	 apps	
created	 every	 day,	 overcoming	 this	 issue	 is	 a	 challenge.	 Performing	 device-level	 analysis	
would	reduce	this	complexity.	Every	time	an	app	is	going	to	be	installed,	security	software	
could	check	the	collusion	potential	with	the	rest	of	the	apps	stored	in	the	same	user	device.	
This	way,	the	number	of	app	combinations	may	be	drastically	reduced.		
	
Our	ongoing	work	is	pursuing	in	two	directions.	First,	we	are	creating	more	tools	and	methods	
to	inspect	the	nature	of	the	communications	between	apps.	Second,	we	are	aiming	to	reduce	
the	complexity	of	analyzing	different	combinations	of	apps	to	detect	collusion	potential.	In	
this	way,	we	will	be	able	to	protect	against	these	kinds	of	attacks	before	they	are	deployed.		
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