Steganalysis of Hydan

Jorge Blasco', Julio C. Hernandez-Castro', Juan M.E. Tapiador!, Arturo Ribagorda!,
and Miguel A. Orellana-Quiros”

I Carlos I University of Madrid, Av. de la Universidad 30, 28911 Leganés
jbalis@inf.uc3m.es, jcesar@inf.uc3m.es, jestevez@inf.uc3m.es,
arturo@inf.uc3m.es
2 Ministry of Economy, Cl. Alcala,5, 28071 Madrid
mangel.orellana@meh.es

Abstract. Hydan is a steganographic tool which can be used to hide any kind of
information inside executable files. In this work, we present an efficient distin-
guisher for it: We have developed a system that is able to detect executable files
with embedded information through Hydan. Our system uses statistical analysis
of instruction set distribution to distinguish between files with no hidden informa-
tion and files that have been modified with Hydan. We have tested our algorithm
against a mix of clean and stego-executable files. The proposed distinguisher is
able to tell apart these files with a O ratio of false positives and negatives, thus
detecting all files with hidden information through Hydan.

1 Introduction

Steganography is the art and science that tries to hide the existence of messages [4]]. The
objectives of steganography are not the same that those of cryptography, which main
aim is to conceal the message contents by performing different transformations so only
authorized persons can read it. At first, one may think that cryptography is enough to
ensure the security of the communications between two parties, but there are scenarios
where the knowledge of the existence of a communication between two parties may be
critical. These scenarios all have something in common with that described by Simmons
and known as the Prisoners problem [12]. In this, two prisoners (Alice and Bob) want to
plot an escape plan. As they are not in the same cell they must communicate through a
warden (Willie). If Willie ever suspects that Alice and Bob are planning to escape or are
engaging in any kind of secret communication he will put them into isolation cells. In
this scenario, Alice and Bob can not simply use cryptography because Willie will rec-
ognize encrypted messages and infer they are communicating secretly, so he will stop
this channel. Alice and Bob should hide their messages into seemingly innocuous ones,
so Willie will not notice the covert communication. Additionally, Willie can behave in
different ways: If Willie just checks the messages and forwards them to its recipient,
then Willie is a passive warden. On the other hand, if Willie has high suspicions of
Alice and Bob planning an escape, but he does not have a proof, it is possible that he
will modify slightly the message contents trying to perturb any hidden information. In
this case, Willie is an active warden. Both possible scenarios must be considered when
designing stego-systems, so the quality of a stego-system can be measured (in addittion

D. Gritzalis and J. Lopez (Eds.): SEC 2009, IFIP AICT 297, pp. 132142.]2009.
(© IFIP International Federation for Information Processing 2009

Steganalysis of Hydan 133

to other properties) by means of the difficulty to detect its content and the possibility
that hidden information is not lost even if the stego-object suffers some modifications.

The first documented use of steganography [5] was made by Demaratus, who wanted
to warn the Greeks about a Persian invasion leaded by Xerxes. Demaratus sent a mes-
sage written on a wooden table covered by wax, so it could pass all the guard controls
and arrive to Sparta.

Since those days, steganography has developed as a science, and many different ap-
proaches have been used to cover contents of any kind [9]]. Image Steganography [4] is
one of the most used techniques. Covering contents into images can be done in many
different ways. Most simple techniques hide information on the least significant bits
(LSB) of each pixel. Other techniques use image compression algorithms. For exam-
ple, the JPEG image compression algorithm is based on the parameters of the discrete
cosine transform (DCT). Using different parameters in the DCT calculation allows hid-
ing information in the image file. Another widely used cover are digital audio files.
Audio steganography also includes techniques such as LSB (similar to image LSB
steganography).

Changing the last significant bit on each audio sample produces slight modifications
on audio files that can not generally be distinguished by humans, specially if the redun-
dancy ratio is high. Audio steganography can be performed also in compressed audio
files like MP3s. Some tools like MP3Stego [10] can hide information during the inner
loop step, by modifying the DCT values. Much more steganographic techniques can
be found in the literature such as subliminal channels [12], SMS [[L1], TCP/IP [6] and
games [3].

All security requirements for cryptographic systems are usually (or should be) ap-
plied to steganographic systems. This means that the security of a steganographic algo-
rithm should not rely itself on the secrecy of the algorithm, which should be public, but
on the knowledge of the key. In steganography, it should not be possible to distinguish
a clean object from a stego-object if the key is unknown. In this work, we prove that
it is possible to distinguish a clean executable file from a stego-object created through
Hydan without the possession of the key. The remainder of this document is structured
as follows. Section[2lintroduces previous work done in executable files steganography.
Section[3ldescribes the basics of Hydan and how it works. Section[d]shows the steganal-
ysis performed on Hydan and the resulting distinguisher. This section also performs a
discussion on possible ways to overcome the steganalysis presented. Section [presents
the gathered conclusions and possible lines of future work.

2 Previous Work

Hydan [2] is the first documented tool and scheme that uses directly executable files as
a cover. During years, other techniques have been used to insert hidden information into
source files, but for copyright protection purposes only. These involve access to source
code, where programmers insert copyright marks and integrity checks right inside their
code. Information inserted in this way can be used to prove the integrity and authorship
of the program [13]. Outside Hydan, other authors [1]] have later described different
techniques to introduce information in executable files. Authors describe four different

134 J. Blasco et al.

techniques. Instruction Selection replaces some of the instructions in the executable
file for others with the same functionality. Register Allocation encodes embedded in-
formation in changes on the registers used by some instructions. Instruction Scheduling
changes the order of non-dependant instructions. Finally, Code Layout uses the order
of big blocks.

Authors have implemented all the proposed techniques in a more advanced tool
called Stilo. A steganalysis of Stilo is proposed in the same paper based on a concept
named Code Transformation Signature, which is defined as the set of characteristics
that can be used to detect the presence of hidden information into Stilo executable files.
Authors describe the Code Transformation Signatures for Stilo and propose a group of
countermeasures to avoid them. Authors also mention Hydan, but they do not perform
any steganalysis nor reveal the corresponding Code Transformation Signatures for Hy-
dan. Apart from this work, no other techniques have been proposed to hide information
on executable files. In this paper we describe the main properties (its Code Transfor-
mation Signatures) that can be used to detect executable-files with hidden information
through Hydan. Based on those properties, a very efficient distinguisher is proposed.

3 Hydan

Hydan is a steganographic tool which covers messages in executable files. It does not
change the functionality of the executable neither the size of it. A detailed description
on how Hydan works can be found on [2].

Hydan uses the “redundancy” on the instructions sets of executable files to introduce
hidden information. Specifically, Hydan uses the concept of functionality-equivalent
instructions. A set of functionality-equivalent instructions is a group of instructions in
which any instruction of the group can be replaced for other without loss of function-
ality. For example, to add a certain amount to a specific register it is possible to use
add, rl, 8 or , equivalently, use sub, rl, -8. In this case, the add instruction could en-
code the bit value 0, and the sub instruction may encode the bit value 1. Depending on
the size of the functionality-equivalent instructions sets it is possible to encode more
than one bit with one instruction. A set of four functionality-equivalent instructions
would allow codifying 2 bits (00, 01, 10 and 11). Generally, with a set of n equiva-
lent instructions it would be possible to encode |log,(n)] bits. Table [Tl describes the
Sfunctionality-equivalent instructions groups and number of instructions in each of the
groups for the x86 set, which is the most common and the one used by Hydan.

Embedding process of Hydan is done in two steps. First step encrypts the message
to be hidden using AES or Blowfish with the password given by the user. In the second
step, the encrypted message is embedded into the executable file. Specifically, Hydan
works as follows: Once the message has been encrypted, Hydan searches for possible
places to introduce information. Then, Hydan generates a random number seeded with
the password entered by the user. This number is used to select which of the selected
places of the executable file will be used to hide the information. With this mechanism,
the password will be needed to recover the data and different passwords will lead to
different placements of the embedded information. Recovery process first extracts the
encrypted message from the executable file. Then, the message is decrypted using the
provided password.

Steganalysis of Hydan 135

Table 1. Groups of functionality-equivalent instructions used in Hydan

Group Inst. Group Inst. Group Inst.
toac8 5 toac32 5 rremp8 2
rremp32 2 toasxc8 7 toasxc32 6
addsub8 2 addsub8-2 2 addsub32-1 2
addsub32-2 2 addsub32-3 2 xorsub8 4
xorsub32 4 add8 2 add32 2
adc8 2 adc32 2 and8 2
cmp8 2 cmp32 2 mov8 2
mov32 2 or8 2 or32 2
sbb8 2 sbb32 2 sub8 2
sub32 2 xor8 2 xor32 2
and32 2

With Hydan, it is possible to embed (on average) 1 bit of information per 110 bits
of executable code. In fact, it is possible to embed different ratios of information, but
El-Khalil proposed the specified one as the better trade-off between security and capac-
ity [2].

Hydan changes perceptibly the content of the executable files with hidden informa-
tion. Therefore, if these changes lead to a specific signature, it is possible to build a
system that is able to distinguish a Hydan executable file from any other executable file.
This signature may show in many different ways. Next section discusses the possible
methods to detect a Hydan modified executable and proposes a very efficient distin-
guisher to detect a Hydan covert-channel.

4 Steganalysis of Hydan

Changes introduced by Hydan into assembler code can modify different properties of
the original executable file. Hydan does not change the size of the stego-object, but it
changes the code itself. If the original program is available it will be possible to check
through integrity checks (CRCs [8]], hash functions [[7], etc.) if the executable file has
been modified, but these are not proof of embedded information. Other properties such
as execution time, flag activation and copyright marks checks, can prove that executable
code has been modified, but will not be proof of embedded information.

Most compilers often produce similar sets of instructions. Thus, if a compiler has
to select between two instructions with the same functionality it will usually select the
same instruction. This property of most compilers allows building a profile of clean
applications based on the probability distribution of instructions inside clean programs.
Changes made by Hydan may lead to another probability distribution of instructions.
If these changes can be profiled and generalized, it would be possible to detect if an
executable file has hidden information. Steganalysis performed on this paper is based
on this approach.

We have built a distinguisher that is able to detect executable files with embed-
ded information through Hydan. To construct this distinguisher, first we have built a

136 J. Blasco et al.

statistical model of clean executable files. Then, we have performed different conceal-
ment operations in a variety of executable files. We have analyzed the main differences
between the set of clean executables and the set of Hydan modified executables. In this
paper, we also describe possible countermeasures and the maximum capacity of Hydan
steganographic files to overcome this steganalysis.

4.1 Statistical Analysis of Clean Executable Files

The distinguisher proposed is based on the presence of unusual sets of instructions
on executable files. We have performed a statistical analysis of a set of 1261 clean
executable files retrieved from /usr/bin and /usr/sbin of an Ubuntu x86 distribution.
Figure [l shows the frequency distribution of the functionality-equivalent instructions
sets for our set of files. This distribution tells the probability that a random instruction
belongs to a functionality-equivalent instruction set. Depending on this distribution,
the bandwidth of the covert channel offered by an executable may differ a lot. The
bigger is the proportion of instructions belonging to a big set of functionality-equivalent
instructions, the bigger will be the information Hydan is able to hide.

Our analysis has shown that all the functionality-equivalent sets of instructions are
present in our test files. Nevertheless, most of the instructions found on the analyzed
files belong to a small group of functionality-equivalent instructions sets. Therefore,
the capacity of the covert channel depends on the capacity of these commonly used
sets (Fig. [I). In order to build our statistical model, we have analyzed distribution of
instructions inside each of the most frequent functionality-equivalent instructions sets.

One of the most used functionality-equivalent instructions sets is toac32. This set
includes five different instructions. Thus, it can encode |log,(5)] = |2.32] = 2 bits.
Frequency distribution of instructions inside the set is shown in Fig.

35
30
25
20
15

10

Frequency in %
o w
toac32 I
mov32 I

] 0 N @ &N = NN Mm 0N 0N Q0N 0N 0 N 0 N QN WO
[QM XM b b A AN 2™MT NO T mam > 5™ mams o
3 Eagsgggr‘;"m:nuv‘g:UEno °©c 52935 a3y
2 S E®@ o3> a0ao00? 33 ® 5 G EE 2“3 <
- OO0 ®m »n »w 5 5 S5 0« o
E¥ 9T T 22 X Q
¥ 5 T T T T <
© ® T T T
© ®© @©

Functionality-equivalent instruction sets

Fig. 1. Frequency distribution of functionality-equivalent instructions sets

Steganalysis of Hydan 137

100

90

80

70

60

50

Frequency in %

40

30

20

test r/m 32, r32 or r/m 32, r32 or r32, r/m32 and r/m32, r32 and r32, /m32

Instructions

Fig. 2. Frequency distribution of instructions on foac32 set

Results obtained in the frequency analysis of this instruction set have been gathered
in Table

Table 2. Frequency distribution of instructions on toac32 set

Instruction Frequency
test r/m32, r32 100.0%
or r/m32, r32 0.0%

or r32, r/m32 0.0%

and r/m32, r32 0.0%

and r32, r/m32 0.0%

In all analyzed files, only one instruction of this set was used. In this case, a variation
of the distribution of instructions within this set would be detected easily.

For each of the remaining sets of equivalent functions, we have computed the fre-
quency distribution of its instructions based on our set of executable files, as in the
toac32 set. Once we have constructed a frequency distribution model for each of the
sets, we have also computed the proportion of instructions per set in each of the exe-
cutable files. Each of the proportions computed for each file and functionality-equivalent
instructions set has been compared using a chi-square statistic () against the frequency
distribution of that functionality-equivalent instructions set calculated for all the files.
For each of the functionality-equivalent instructions sets we have calculated the average
x? statistic (Equation).

2
n 2
Averagese, = z X‘Zlei (1)
i=0

138 J. Blasco et al.

20

15

10

0 N 0 N O N 0 N 00 N 0 0 N O N O AN QO N NN 0N
O m am X m 2 M 3T MmO T mMam205PamMamEQ
S o g a g x > 2 5 T T8 c T g 29 2 522 3252 23
ggugmg $ > @ T © ® c 5 g E Q w o » S I}
£ £ O 0 @© c £ © © (5 £ 2 @
£ * 9o X 9o
= S 2

Average chi-square value
o w
addsubg-1

addsub8-2 |

addsub32-1 |
addsub32-2 I

addsub32-3 |

Functionality-equivalent instruction sets

Fig. 3. Average chi-square statistic for each of the functionality-equivalent instructions sets

180
160
140
120
100
80
60
40

20

addsubg-2

addsub32-1 N

addsub32-2

addsub32-3

Chi-square value
o
addsubg-1 I

QN R N QoA Q N 0O N QN QN W N QN NN O N
O m o m X m 2 m T M O T MmMamMZ2Mm 5 M®maamoms |
o > T T c T >
© o 9 % el ° 2 0 > © v o a9 o 2 35
2 85 E 8 3 23 ®8 5 ® & c 5 g E Q © w o o S 2
s Epeg g8 ° coe O E o
= - X

Functionality-equivalent instruction sets

Fig. 4. Chi-square statistics for each of the equivalent instructions sets in apt-get

Where set; is a functionality-equivalent instructions set, and file; is the ith file on our
set of files. Figure 3] shows the average y? for all the functionality-equivalent instruc-
tions sets. For most of the equivalent instructions sets, the distribution of its instruc-
tions has remained constant in all the executable files. Thus, its averaged chi-square
is 0. Functionality-equivalent instructions sets with higher average value indicate that
the frequency distribution of that sets has more variability between executable files.
Figure 3] shows how six of the functionality-equivalent instructions sets suffer lots of
variability on the distribution of its instructions depending on the executable file.

Steganalysis of Hydan 139

160
140
120
100

80

Chi-square value

60

40

20

addsub8-1 I
addsubg8-2 I

addsub32-2

OII I I | | | | .II -
® N © N QN - ® O A DA MO N DN DN PN DN DN N
O M Q9 Mm X M (\" ({‘D(')'UMU'U(")Q.I"J>(V)‘O—(").Q(’J.QU)‘O—(')
& 0o £ o 8 % 5 0B T T T £ ad 2 52 9 39 2%
S & £ 2 0 «Q P33 T & c C € £ © ©® 3o o 3 e
< o g S @ k-] 2 5 2 & g © £ @ @ x
< £ S o ® > 5 o 2 5]
= * O (2] » X O
had e el x
e e
© @

Functionality-equivalent instruction sets

Fig. 5. Chi-square values for each of the equivalent instruction sets in apt-get with hidden infor-
mation

Differences introduced by Hydan will change the frequency distribution of instruc-
tions inside each of the functionality-equivalent instructions sets. Comparing the new
instruction distributions obtained against the reference distributions for each of the
functionality-equivalent instructions sets will allow to determine if information has
been embedded into the executable file.

This can be easily seen through an example. Figure [l represents the differences,
in terms of a y? statistic, on the frequency distribution of each functionality-equivalent
instruction set of the apt-get executable file with no embedded information. Differences
obtained are consistent with the average shown on Fig[3l

Inserting information into this executable file will modify the frequency distribution
of instructions inside some of the sets of equivalent instructions. Figure [3] represents
differences, in terms of a xz statistic, on the distribution of instructions inside each of
the equivalent instructions sets of the apt-get executable with embedded information.

Frequency distribution of instructions inside the highly variable functionality equiv-
alent instruction sets has also offered high chi-square values, as in the reference (Fig.[3))
and clean file comparison (Fig. H). Nevertheless, distributions of some functionality-
equivalent instructions sets have changed and its chi-square has increased comparing it
with the reference comparison (Fig.[3) and the previous chi-square value (Fig.[), which
was 0.

The same procedure has been performed with all the executable files, obtaining for
each set a model of the frequency distribution of that set. This has allowed us to estab-
lish which distributions of instructions inside functionality-equivalent instruction sets
remain constant between different clean executable files.

These results have been used to build our distinguisher which is explained in the next
section.

140 J. Blasco et al.

5 Distinguisher Design

The proposed distinguisher measures the changes on the distribution of instructions in-
side a selection of functionality-equivalent instructions sets. These measures have been
made in terms of a y? statistic against the reference distribution for each of the se-
lected functionality-equivalent instructions sets. Functionality-equivalent instructions
sets with high variability of instruction distribution between clean files have not been
selected in the calculations of our distinguisher value. High variability may elevate
the result offered by the distinguisher, marking some clean files as stego-objects. Our
distinguisher only uses the functionality-equivalent instructions sets which its average
chi-square value is 0, as calculated in[I} Therefore, 8 sets of functionality-equivalent in-
structions are not used: toac8, rremp32, addsub8, addsub8-2, addsub32-1, addsub32-2,
addsub32-3 and xorsub8. Mathematically, the value obtained with our distinguisher is
expressed as follows:

n
D(flle) = z Xiznstructi()n set; (2)
i=0

Where n is the number of sets of functionality-equivalent instructions whose average
chi-square value is 0. To obtain the threshold of our distinguisher we have calculated
all the results the distinguisher offers from three set files: a set of clean files, a set of
files with embedded information using a 40 % of its capacity and a set of files with
embedded information using an 80 % of its capacity. We have calculated the mean and
standard deviation of values obtained by the distinguisher for the three sets. Results

obtained are shown in Table

Table 3. Distinguisher results for different sets of executable files

Distinguisher Clean Hidden at 40% Hidden at 80%
Mean 0.000604 151.254608 299.039886
Standard Deviation 0.024571 12.298561 17.292770

We have selected the threshold of our distinguisher as the addition of the mean and
the standard deviation of the clean files set. When a file offers a value above the expected
mean and typical deviation it is marked as a stego-object. Threshold of our distinguisher
is described be as follows.

T = Mean,joan + T.Deviation jean = 0.000604 +0.24571 = 0.025175 (3)

5.1 Results

With the selected threshold we have performed a test over three sets of files, each having
1063 files. The first set of files is a selection of clean files from the Ubuntu 8.10 x86
distribution. Second set of files is the set of clean files with embedded information up
to 40% of the capacity of each file. Last set is composed by the first set of files with
embedded information up to an 80% of the capacity of each file. Distinguisher values
obtained for each of the files are shown in Fig.[6l

Steganalysis of Hydan 141

1000

100

0,1
®no hidden information

©40% hidden information
*80% hidden information

0,01

Distinguisher value (logarithmic scale)

0,001

0,0001

0,00001

Fig. 6. Distinguisher results for sets of executable files

Values obtained by our distinguisher for the clean files are separated from the ones
offered by files with embedded information. Some results offered by embedded infor-
mation files are low, but higher than the values returned by any of the clean files. In fact,
our distinguisher has classified all the executables correctly (Table [).

Table 4. Distinguisher classification results for different sets of executable files

Expected clean executables Expected embedded exec.

Predicted clean executables 1063 0
Predicted embedded exec. 0 2126

In order to produce executable files that are not detected by our tool some changes
should be done to Hydan. Our analysis have shown that replacement of functionality-
equivalent instructions is not secure if the frequency distribution of instructions inside
a functionality-equivalent instruction set is constant. A first approach to secure Hydan
would be to use only the functionality-equivalent instruction sets not used by our dis-
tinguisher. This would reduce the capacity of hidden information up to a 35% of the
original capacity. Stego-files generated this way would not be detected by the distin-
guiser, producing false negatives.

142 J. Blasco et al.

6 Conclusions and Future Work

Steganalysis techniques are needed in order to ensure and improve the security of stego-
systems in the same way cryptanalysis is needed to foster the security of cryptography
techniques. With this work, we have developed a distinguisher that is able to recognize
executable files with hidden information through Hydan. To create our distinguisher
we have built a statistical model of clean executable files. In our tests, the proposed
distinguisher classified correctly all executable files in different proportions of conceal-
ment (0%, 40% and 80%). We have also described how to overcome this steganalysis.
Research on steganography of executable files is not extensive at the moment, but im-
provements to secure Hydan and other related steganographic tools [[1] could only be
achieved through extensive research in the field. We have advanced in this direction,
and plan to further advance by refining the steganalytic methods proposed in [|1] against
Stilo.

References

1. Anckaert, B., De Sutter, B., Chanet, D., De Bosschere, K.: Steganography for executables and
code transformation signatures. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506,
pp. 425-439. Springer, Heidelberg (2005)

2. El-Khalil, R.: Hydan: Hiding information in program binaries. In: Loépez, J., Qing, S.,
Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 187-199. Springer, Heidelberg (2004)

3. Hernandez-Castro, J.C., Lopez, 1.B., Tapiador, J.M.E., Ribagorda, A.: Steganography in
Games. Computers and Security 25(1), 64-71 (2006)

4. Johnson, N.F., Jajodia, S.: Exploring steganography: Seeing the unseen. Computer 31(2),
26-34 (1998)

5. Kipper, G.: Investigator’s Guide to Steganography. CRC Press, Boca Raton (2004)

6. Murdoch, S.J., Lewis, S.: Embedding Covert Channels into TCP/IP. In: Barni, M., Herrera-
Joancomarti, J., Katzenbeisser, S., Pérez-Gonzalez, F. (eds.) [H 2005. LNCS, vol. 3727, pp.
247-261. Springer, Heidelberg (2005)

7. Naor, M., Yung, M.: Universal One-Way Hash Functions and Their Cryptographic Applica-
tions. In: Proceedings of the twenty-first annual ACM symposium on Theory of computing,
pp- 33-43. ACM, New York (1989)

8. Peterson, W., Brown, D.: Cyclic Codes for Error Detection. Proceedings of the IRE 49(1),
228-235 (1961)

9. Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.: Information Hiding:A Survey. Proceedings
of the IEEE 87(7), 1062—-1078 (1999)

10. Petitcolas, F.A.P.: MP3Stego (2006) (Cited October 20, 2008),
http://www.petitcolas.net/fabien/steganography

11. Shirali-Shahreza, M., Shirali-Shahreza, M.H.: Text Steganography In SMS. In: Int. Confer-
ence on Convergence Information Technology, pp. 2260-2265 (2007)

12. Simmons, G.J.: The History of Subliminal Channels. IEEE Journal on Selected Areas in
Communications 16(4), 452462 (1998)

13. Zhu, W., Thomborson, C.: Recognition in Software Watermarking. In: Proceedings of the
4th ACM international workshop on Contents protection and security, pp. 29-36. ACM, New
York (2006)

http://www.petitcolas.net/fabien/steganography

	Steganalysis of Hydan
	Introduction
	Previous Work
	Hydan
	Steganalysis of Hydan
	Statistical Analysis of Clean Executable Files

	Distinguisher Design
	Results

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

