A Framework for Avoiding Steganography Usage Over
HTTP

Jorge Blasco?, Julio Cesar Hernandez-Castro®, José Marfa de Fuentes?,
Benjamin Ramos®

@Computer Science Department, Carlos 111 University of Madrid, Av. de la Universidad
30, 28911 Leganés
bSchool of Computing, University of Portsmouth, Buckingham Building, Lion Terrace,
Portsmouth PO1 S8HE, UK

Abstract

Steganographic techniques allow users to covertly transmit information, hid-
ing the existence of the communication itself. These can be used in several
scenarios ranging from evading censorship to discreetly extracting sensitive
information from an organization. In this paper, we consider the problem of
using steganography through a widely used network protocol (i.e. HTTP).
We analyze the steganographic possibilities of HTTP, and propose an ac-
tive warden model to eliminate any covert communication channel. Our
framework is meant to be useful in many scenarios. It could be employed
to ensure that malicious insiders are not able to use steganography to leak
information outside an organization. Furthermore, our framework could be
used by web servers administrators to ensure that their machines are not
being abused, for example, as anonymous steganographic mailboxes. Our
experiments show that steganographic contents can generally be successfully
eliminated, but that dealing with high payload carriers such as large images
may introduce notable delays in the communication process.

Keywords: steganography, covert channels, http, active warden,
sanitization

Email addresses: jbalis@inf.uc3m.es (Jorge Blasco),
Julio.Hernandez-Castro@port.ac.uk (Julio Cesar Hernandez-Castro),
jfuentes@inf.uc3m.es (José Maria de Fuentes), benjal@inf.uc3m.es (Benjamin
Ramos)

Preprint submitted to Journal of Network and Computer Applications May 24, 2011



1. Introduction

Steganography is the science that studies the techniques to hide the exis-
tence of messages (Johnson and Jajodia, 1998). The ability of sending secret
messages can be useful for several purposes. On one hand, in a country
under a totalitarian government steganography could be used to circumvent
censorship (Feamster et al., 2002), and in a more general setting it could
be instrumental for whistleblowers. On the other hand, steganography can
also be used to commit malicious or criminal activities. In fact, it could be
used by an employee stealing sensitive information from an organization in
a case of industrial espionage. Before transferring this valuable information,
the employee may hide it into innocuous looking documents. In this way,
any security check or network monitoring tool would not detect sensitive in-
formation leaving the organization. Steganography can also help exchange
illegal content (such as child pornography) using public resources like web
servers or P2P networks as repositories, without the knowledge of the owners
of those resources.

Recently, the usage of steganography reached public media coverage when
a group of spies from Russia were uncovered (McGreal, 2010). As the FBI
report describes (Kac, 2010), the spies, who infiltrated some United States
Government agencies, used a steganographic program to conceal their in-
telligence reports into digital images. Those were later uploaded to public
web servers, so the Russian intelligence at Moscow could download them
and extract the secret messages (intelligence reports) after the use of a pre-
shared key. Another malicious usage of steganography that has risen recently
is to command & control botnets (Kartaltepe et al., 2010). By employing
steganography, botnet owners can benefit from social network sites and trans-
form them into infrastructures to covertly deliver their commands. In this
way, botnet administrators have a centric, fast, reliable and easy method to
distribute their commands to multiple bots.

Avoiding such a kind of malicious steganography usage is an important
issue for organizations which hold large amounts of sensible information,
or by system administrators that do not want their services to be used for
unauthorized purposes.

The contribution of this paper is twofold: First we present a framework
which limits the transmission of hidden information through Hyper Text
Transfer Protocol (HTTP). Our system hinders the usage of steganography
on HTTP message body entities such as images, text, etc. Additionally, it



avoids the usage of the HTTP protocol structure itself for steganographic
purposes (i.e. modifying HTTP headers to hide information as proposed by
Dyatlov and Castro (2003)). Although steganography can be used to create
a covert channel through any kind of network protocol, we have focused on
the restriction of HT'TP for several reasons:

e The restriction of HTTP traffic through firewalls and rule based sys-
tems is infeasible as it is essential for Internet communications. HTTP
provides access to multiple kinds of services such as news, search en-
gines, web mail, social networks, multimedia, etc. but also provides
enterprise services such as Business to Business services, reference, doc-
umentation, etc. which are essential for organizations and cannot be
simply blocked.

e HTTP allows users to access plenty of information and consumption
services (YouTube, Flickr, etc.). These kind of services can be eas-
ily used by steganography users as cover repositories and anonymous
mailboxes to upload, store and download hidden information (Burnett
et al., 2010). In this regard, URL filtering software could be used to
restrict the amount of sites a potential steganography user is able to
connect. Due to the great amount of these, it is however unlikely that
the security administrator will be able to block them all.

e The usage of HT'TP provides a higher anonymity level, in compari-
son with other common organization wide network protocols such as
SMTP. Although HTTP communications are not anonymous, only the
web server administrator or network nodes between the user and the
web server may posses enough information to identify who accessed the
server resources (the possible recipients of the hidden messages). Other
protocols such as SMTP explicitly specify the recipient of the informa-
tion when communicating to an intermediary server, so they are easier
to trace.

e Finally, the usage of third party web servers as part of the stegano-
graphic communication involves a violation of the terms of these web
servers. This kind of abuse may induce unnecessary overloads that
should be actively avoided by system administrators.

Our proposal enables the normal usage of HI'TP connections, while pre-
vents the existence of covert channels through these. This would allow organi-



zations to avoid information theft through HTTP. Additionally, our scheme
may allow service providers to ensure clients perform authorized usage of
their services (i.e. they are not used to covertly store unauthorized mate-
rial). Although our proposal is focused on HTTP it may be easily adapted
to other protocols such as SMTP, FTP, etc.

The rest of the paper is structured as follows. We describe the basics of
Steganography in Section 2. The related work is summarized in Section 3. In
Section 4, we analyze the steganographic capabilities of HT'TP. The design
of Stego-Proxy is explained in Section 5. Section 6 depicts our evaluation
and summarizes our results. Finally, Section 7 gathers the conclusions and
future work lines.

2. Steganography

The first model of steganography was described by Simmons (1998) as
the prisoners’ problem. Simmons described two prisoners (Alice and Bob)
who want to plot an escape plan. As they are not in the same cell, they
must communicate through a warden (Wendy), that will analyze any com-
munication between them. If Wendy ever suspects that Alice and Bob are
planning to escape he will put them into isolation cells and the escape will
be frustrated. In this scenario, Alice and Bob will not be able to just use
cryptography, as encrypted messages will raise suspicions on Wendy. In order
to achieve their goal, Alice and Bob should hide their secret messages into
innocuous looking ones (called covers), so Wendy will only see unremarkable
messages exchanged between prisoners.

However, if Wendy is aware of the existence of some kind of steganography
she may be able to detect the presence of hidden messages or even further
destroy the covert channel between Alice and Bob. On one hand, if Wendy
just analyzes the messages and forwards them to its recipient, then Wendy
is a passive warden. In this case Wendy verifies if the cover contains hidden
contents or not. On the other hand, if Wendy has high suspicions of Alice
and Bob planning an escape through their messages, but she is not able
to obtain proof, she may modify slightly the exchanged messages trying to
perturb any hidden information. In this case, Wendy is an active warden.
Even further, Wendy may be able to insert some information impersonating
Alice or Bob, thus performing a man in the middle attack. In this case
Wendy is a malicious warden. Although steganographic algorithms should
be robust to active warden attacks, steganographic researchers have mainly



focused on the imperceptibility of hidden information while resistance against
active attacks has been mostly addressed in other information hiding areas
like watermarking (Cox et al., 2008).

Thanks to the widespread adoption of digital devices and electronic doc-
uments, steganography has attracted the interest of researchers in the last
years. Fisk et al. (2003) defined the concepts of structured and unstruc-
tured carriers. A carrier specifies the features or characteristics used to hide
the information in the cover. In this regard, a structured carrier is defined
as a carrier which structure is well defined (XML files, PDF files, network
protocols, etc.), while unstructured carriers do not have a defined structure
(images, video, natural language, etc.). HTTP is a specially interesting and
relevant case because it encompasses both carrier types, as information can
be hidden into the structure of the HT'TP message (see Section 4) or into
the content uploaded or downloaded by the user (images, video, documents,
etc.).

2.1. Steganography in Unstructured Carriers

The increasing concerns about copyright violations of multimedia works
motivated the first research efforts on information hiding techniques for un-
structured carriers. Least Significant Bit (LSB) techniques are the best
known technique, based on hiding information into the least significant bits
of covers (van Schyndel et al., 1994). Depending on the data representation,
least significant bits can be the last bits of the RGB composition or the last
significant bits of the DCT transform, etc. The amount of information em-
bedded in the image generally sets the amount of distortion that results in
the cover image. Due to the size of image files, image steganography provides
high capacity. A comprehensive description of several image steganography
techniques can be found in (Chandramouli et al., 2004).

Burnett et al. (2010) propose the usage of image steganographic algo-
rithms to create a covert channel through an image sharing website (i.e.
Flickr). Authors built a software that is capable to hide secret messages into
images that are then uploaded to Flickr. Users who want to read a secret
message have just to configure a client application to access the Flickr profile
of the sender and use a pre-shared password. images are uploaded through
HTTP connections. Although authors propose their system mainly to avoid
censorship, it could also be used to exfiltrate sensitive information from an
organization network.



Audio steganography techniques allow to hide information in compressed
(MP3, etc.) or uncompressed (WAV, etc.) audio files. In this regard, the con-
cept of LSB steganography can be also used in the audio domain. Changing
the least significant bit on each audio sample allows to encode information
without generally creating an audible difference on the audio file. Depending
on its configuration, an audio file may hold up to 44100 audio samples for
every second, making uncompressed audio a very high capacity carrier (Ben-
der et al., 1996). Audio steganography can be performed also in compressed
audio files like MP3s (Petitcolas, 1998).

Besides image and audio, another widely used way to represent informa-
tion is text. The most relevant proposals for text steganography have been
based on the concept of mimic functions (Wayner, 1992). Using mimic func-
tions, NICETEXT (Chapman and Davida, 1997) is able to transform a secret
message M into a seemingly innocuous text 7" which contains sentences in
natural language. Grothoff et al. (2005) propose to embed information into
the noise and errors produced by automatic translation systems. In this way,
new errors and noise detected on the steganographic text would be attributed
to the automatic translation system. Particular language and expressions
used in some contexts can be also used to introduce hidden information.
Shirali-Shahreza (2006) proposes to take advantage of the language used on
short text messages to hide secret messages.

Timing and order of packets in network protocols are also unstructured
carriers that can be used to hide information. In this regard, Ahsan and
Kundur (2002) propose to hide information in the order of TCP and IP
packets. As TCP provides with a reassembly mechanisms, they studied how
to embed information in such a way that packets are rearranged depending on
the secret to transmit. A generalization on the steganographic possibilities
of ordered channels was presented in (Chakinala et al., 2007).

2.2. Steganography in Structured Carriers

Although network protocols can be used as unstructured carriers (i.e.
timing channels), the network protocol structure also allows to create covert
communication channels. Fisk et al. (2003) identified some methods to embed
hidden information on TCP, UDP, ICMP or IP header fields. Fields such as
options or padding could be used to insert additional hidden information.
A complete survey of structured network covert channels can be found in
(Zander et al., 2007).



Document formats such as Microsoft Word (Park et al., 2009) and PDF
files (Zhong et al., 2007; Lee and Tsai, 2010) can be used to hide information.
In the former article, authors propose to actually hide information using
redundancy in the Microsoft Office 2007 document format (OOXML), which
is based on XML. Specifically, authors use unknown relationships and parts,
which are elements of the OOXML that are not shown by any Office program,
but are saved and can not be modified within the Office suite. In the latter
proposal, information is embedded in imperceptible changes on character,
word, and line spacings.

3. Related Work - Fighting Against the usage of Steganography

Even though steganography is not a threat by itself, its malicious usage
entails a threat that must be addressed. Detection and/or elimination of
steganography are the most common methods to fight its usage. Detection
techniques try to tell whether steganography has been used or not Elimina-
tion techniques try to actively destroy or alter the hidden information, as the
active warden in Simmons’ scenario.

3.1. Steganography Detection

Steganalysis studies the security of steganographic algorithms. A stegano-
graphic algorithm is considered secure if it is not possible to statistically
distinguish between a cover with hidden information and a clean one (Cox
et al., 2008). Once the mere existence of hidden information has been de-
tected, the purpose of steganography has been defeated, so the algorithm is
considered broken. There exist several types of steganalysis. A targeted ste-
ganalysis uses the knowledge about the steganographic technique to detect
stego-objects created with that specific technique, while blind steganalysis
aims to distinguish if a file has some hidden information with no information
about the used steganographic technique. Usually, steganalysis techniques
are based on statistical models of clean files, used to design classifiers that
are able to detect files with hidden information because they differ from this
underlying model.

Blind and targeted steganalysis techniques have been greatly studied on
digital images (Fridrich and Goljan, 2002). In audio, authors of Geetha et al.
(2006) identify audio quality metrics as a statistically distinguishable feature
between stego-objects and cover audio files. Using a genetic algorithm, they
are able to build a distinguisher that told apart up to 80 % of stego-audio



files. Targeted approaches such as (Hernandez-Castro et al., 2010) have also
been proposed, enabling in this case to detect hidden information embedded
through MP3Stego.

Steganalysis techniques also target faulty implementations of stegano-
graphic algorithms. Bell and Lee (2010) found that most steganographic
algorithm implementations modify the headers of the cover used when em-
bedding information. This is produced because the steganographic algorithm
has not been correctly implemented, removing most of the meta-data of the
original cover. Authors prove that most steganographic applications create
stego-objects with new metadata instead of using original meta-information,
thus greatly easing the detection of stego-objects by these characteristic new
headers. Both MP3Stego and Qutguess are vulnerable to this kind of attack
(Petitcolas, 1998; Provos, 2001).

An architecture for implementing steganalysis techniques was addressed
in (Liu et al., 2009). Authors propose a system to implement several ste-
ganalysis techniques to detect steganographic content transmitted through
network protocols in real time. Their approach is tested against video covert
channels, but authors acknowledge the limitations on the scalability of their
system when targeting multiple steganographic algorithms. Another related
proposal is (Ulieru et al., 2004). In this, authors propose an agent based
architecture to detect and extract hidden information from websites.

Another way to detect the usage of steganography is by finding the pres-
ence of steganographic programs used to hide or embed information. Zax
and Adelstein (2009) identified the main forensic artifacts of steganographic
applications. These, along with forensic software such as Encase! or The
Coroner’s Toolkit? may allow the detection of steganography applications,
thus providing a way to alert and even take countermeasures such as for-
bidding the execution of those applications. This approach is useful if there
exists the possibility of monitoring the suspicious computer (i.e. a malicious
employee inside an organization).

3.2. Steganography elimination

Steganography elimination techniques try to eliminate possible covert
channels without disrupting legitimate communication. The active warden

Thttp://www.guidancesoftware.com/
http:/ /www.porcupine.org/forensics/tct.html



of Simmon’s scenario uses these kind of techniques to hamper covert commu-
nication between Alice and Bob. The main issue in these kind of techniques
is how to eliminate the hidden information without changing the perception
of the transmitted object, as the purpose is to break the cover communica-
tion, but not to render the legitimate channel unusable. The most common
active warden technique is overwriting possible hidden information carriers
with random noise.

The process of eliminating the covert channel is also called steganographic
sanitization. Whitehead (2005) sanitized image data by overwriting redun-
dancy sources of images (LSB, DCT, and DWT). Their approach showed no
visual impact on the sanitized images. The requirements of the sanitization
process (average of 175 milliseconds per image), made it suitable for use on
networks.

Fisk et al. (2003) introduced the concept of Minimal Requisite Fidelity
(MRF). MRF measures the degree of fidelity that is both acceptable for
the end user and the communication (i.e. routers, network cards, system
kernels, etc.). On structured carriers, MRF is a measure that quantifies the
amount of information that can be modified without destroying the semantics
of the modified object while on images and videos (unstructured) it can be
calculated through human perception. In their work, Fisk et al. identified
features of TCP/IP packets that may lead to covert communications such as
window size, packet order, source ports, padding bits, etc. They described
a sanitization process to delete the hidden information that was inside the
boundaries of the MRF for TCP, UDP and ICMP communications.

Additionally, Schear et al. (2006) introduced a framework to avoid in-
formation leakage through public web servers. Their system uses a warden
that must allow a document to be published into a public web server. The
warden (which may be a human or a machine) is in charge of checking if
the document contains sensitive information (as defined by the organization
security policy). Any document not previously vetted is filtered by a gateway
that has direct communication with the warden. To avoid information leak-
age through a compromised web server, authors propose to sanitize HTTP
connections, rewriting sent headers. This system does not overwrite possible
steganographic carriers, but tries to detect hidden information before vetting
a document.



On other contexts, commercial proxies, such as SafeSquid?, allow content
and URL filtering based on security policies defined by the organization. This
kind of proxies are focused on limiting the resources the employee access (i.e.
social networks, personal sites, etc.) from inside the organization as well as
protecting them from accidentally downloading viruses, etc. from malicious
web sites. Nevertheless, to the best of the authors knowledge there is not
any implementation of such proxies that eliminates steganographic content
of HTTP connections.

Although previous approaches have studied methods and techniques to
avoid the usage of steganography, none of them have proposed an actual
solution that may avoid its usage in real scenarios (such as communicating
covertly through HTTP). Previous presented approaches have allowed im-
provements on the active warden scenarios, but they are not able to protect
against covert channels through HTTP communications, as they only take
into account some of the possible features where information might be hid-
den. We propose a design that allows to eliminate covert channels created
through an application network protocol (specifically HTTP). Our design
could be easily adapted for other network application protocols. This could
serve to ensure that the HT'TP protocol is not being used to covertly trans-
mit non negligible amounts of information, as well as to make certain that
some services, which may be used to transmit and store hidden information,
are used according to the terms of use accepted by the user.

4. Covert Channels over HTTP

The Hyper Text Transfer Protocol (HTTP) is defined in RFC 2616.
HTTP is a widely used application protocol that supports transmission of
any object that can be defined through a MIME type. It is a stateless pro-
tocol that works over TCP connections. It works on a request - response
basis. Each time a client requests a resource, the HT'TP server replies with a
response for that resource. The version 1.1 of the protocol allows to maintain
the TCP connection between different pairs of request-responses.

HTTP request and responses are very similar in their structure. A mes-
sage is composed by a message start line, a set of headers and a message
body. The message body is separated from the headers by an empty line

Shttp://www.safesquid.com

10



ended with \r\n. The message start line depends whether the message is
a request or a response. On requests, the start line is named request line
and is composed by the method to use, the universal identifier (URL) of the
requested resource and the HTTP version (now 1.1). On responses, the start
line is named response line and is composed by a status code followed by
a description of that code and the HTTP version used. HT'TP headers are
pairs of header name - value separated with :”. The message body is used to
transmit any data associated with the request or the response. HT'TP uses
MIME types to describe the message body contents.

HTTP can be used as a covert channel to allow the exchange of infor-
mation between two users. Depending on the users and the intended appli-
cations, there are two main possibilities. In the former, a user establishes a
covert communication between him and a web server. In this case informa-
tion can be hidden in both the content transmitted and the structure of the
HTTP messages. In the latter, a user establishes a covert communication be-
tween him and another user. In this case, both users use the HI'TP server as
a hosting service (intermediary) for exchanging their messages. The HTTP
server is usually unaware of the fact that it is being used for an unauthorized
purpose. In this scenario, information is exchanged using the body of the
HTTP messages, as the other party does not have access to the HT'TP head-
ers. This model was described in some depth by Jones (2001). Researchers
have studied and proposed several methods to combine both of the previously
described approaches.

Feamster et al. (2002) suggest the usage of an HTTP covert channel to
avoid censorship on the web. In this, a web server authorized by the cen-
sors, but outside their control, works as a conscious intermediary between
the client and unauthorized web servers. To perform a request to censored
content, the client sends an innocuous request to the accomplice web server.
The unauthorized URL is hidden inside innocuous requests URL. The ac-
complice web server access the censored content and hides it (using image
steganography) on an image that is sent back to the client as response to the
innocuous URL request.

Dyatlov and Castro (2003) describe different characteristics of HTTP
messages that may be used to transfer information in a covert fashion. These
include modifications on header order, structure and contents. As an exam-
ple, Horenbeeck (2006) proposes the usage of Entity tag headers (which value
is determined by web server implementations) to send information to clients.
Entity tag headers are used to know if a specific website content requires to be

11



downloaded again (through the usage of the ”if-no-match?” header). Clients
may also modify the entity tags they sent to transmit cover information to
the web server.

Besides previous presented approaches, an HTTP packet can hide infor-
mation in the following elements:

e HTTP Version: Both client and server may modify the version of the
HTTP protocol they are using to communicate in order to transmit
some bits of information. However, this kind of behavior would be
easily detected by a careful observer, as it would not be usual to change
the HT'TP version of the protocol during consecutive requests from the
same machines, so this approach is not recommended.

e Headers: HTTP headers allow to hide information in a variety of
ways. Modifying the order of HT'TP headers may allow to hide certain
amounts of information. Additionally, the usage of new non-standard
headers, or the modification of some of the headers contents (such as
the inclusion of uppercase, etc.) would also allow to codify some bits
of hidden information.

e Content: Section 2 describes some techniques to hide information in
carriers such as images, audio, text or document files. As HTTP al-
lows to transmit these in the message body, hiding information in such
carriers would allow to establish a covert channel through HT'TP. This
approach is used in (Burnett et al., 2010) with images uploaded to
Flickr as carriers.

5. StegoProxy Design & Implementation

The proposed system aims to forbid the usage of covert channels through
HTTP. It would be useful when dealing with malicious insiders, or users who
abuse computer networks to covertly transmit illegal contents.

5.1. Working Scenario

To illustrate the aims of our system, we consider the following scenario
(Figure 1). A disgruntled employee Alice who has access to organization’s
sensitive information wants to transmit it to an unauthorized recipient(Bob).
Alice may directly send the sensitive documents to Bob by mail, but traces
at the mail server would indicate that Alice contacted an outsider and sent

12



him sensitive information. This would ease Alice’s prosecution. Or maybe
her company has implemented a Data Loss Prevention solution that will
detect her attempt and stop it. To overcome these drawbacks, Alice could
use a steganographic program to conceal the sensitive information and send
it as an innocuous looking message (i.e. image) to Bob. If the malicious
behavior is discovered, an audit may find Alice suspect, as she has sent
strange messages to an unknown recipient. However, Alice could upload the
hidden sensitive information (in an innocuous image) to a public web server
(i.e. Twitpict) (1). If Bob (the intended recipient for Alice hidden messages)
is the administrator of the web service used by Alice, he will just have to
extract the hidden information from Alice messages (3b). If Bob is another
web service user, he will have to access as any other user but also extract
the hidden information (3a). In this case, his identity will only be revealed
to the web service where the hidden content is stored. Therefore, its identity
remains anonymous to Alice’s organization, as many other users may have
accessed the same information (2).

Web server administrator

INTERNET

Web Server

Web Server users

Figure 1: Working scenario diagram

4This service is used by Twitter users to share images and other multimedia content
such as videos. http://www.twitpic.com

13



Based on the previous scenario, our system can be placed at a network
infrastructure for two purposes: destroy any possible hidden communication
outside a specific network, or eliminate any kind of covert communication
coming into a network. In the former, a malicious insider might be using
the network to transfer sensitive information outside an organization. We
need to assume that the insider has not enough privileges to change packet
routing, which is a reasonable assumption in most cases. In the latter, a
computer resource such as a public web server may be used to transfer that
sensitive information. As these two networks will probably be controlled
by different organizations, they both must protect against these kinds of
attacks separately. The design of our system takes this issue into account as
it allows to filter both incoming and outgoing HTTP connections. Besides
the previous scenario description, we also assume the following constraints:

e Systems used inside a controlled network can not be fully accessed or
controlled. This is reasonable because of law restrictions on employees’
privacy. Thus, it is only possible to control network communications.

e Usages of unknown or not explicitly allowed network protocols inside
the controlled network can be forbidden. Otherwise, these protocols
could be used to establish additional covert channels.

e Protocols such as SMTP, IMAP, etc. are not taken into account. Nev-
ertheless, our framework could be easily adapted to work under those
protocols.

5.2. Design

StegoProxy eliminates steganographic content by overwriting possible
carriers of steganographic information. For such a purpose our framework
is based on the concepts of Steganographic Unit and Minimum Request Fi-
delity. We define a Steganographic Unit as the minimum amount of semantic
information that allows the transmission of hidden information, thus, the
creation of a covert channel. Any part of an HT'TP message that can be
changed without changing the semantics of the message can be considered as
a steganographic unit. HT'TP steganographic units were described in Section
4. Steganographic units shall not be confused with the information carriers.
As an example, two unstructured carriers such as text can refer to different
steganographic units: the user agent definition and text from a web page.

14



The concept of Minimum Request Fidelity (MRF) was introduced by
Fisk et al. (2003) and describes the maximum changes an object can support
until it can not be considered semantically the same object. As HT'TP allows
both structured and unstructured carriers, our system will have to take into
account the MRF for both kind of carriers.

Depending on the organization’s aim, StegoProxy can be deployed in
different network placements. If the main goal of StegoProxy is to stop pos-
sible information leakages through HTTP connections, it should be placed
as a transparent proxy at the Internet gateway (Figure 2). To reduce the
added overload, several StegoProxies can be deployed to work in parallel. In
this way, all HT'TP messages from inside the organization will have to pass
through StegoProxy. On the other hand, if the aim is to ensure that a web
service is not being used as an anonymous mailbox for covert communica-
tions, the proxy may be placed after the web server captures the request, but
before it is processed and passed to the web application (as in Figure 3).

Server Workstation Workstation

‘ INTERNET

Workstation

Web server

Intemet Gateway  gto00proxy

Figure 2: StegoProxy placement to avoid covert HI'TP channels inside an organization

5.3. Components
As shown in Figure 4, our system comprises three main components: the

HTTP inspector, the steganographic unit sanitizers and the HT'TP assem-
bler.

HTTP Inspector

This component analyzes incoming packets and divides the HTTP mes-
sages into steganographic units SU; that will be later processed. Stegano-
graphic units are created using a database that can be expanded when new
carriers are discovered on HT'TP communications. Steganographic units can

15



Web server
users

INTERNET

StegoProxy Web server

Figure 3: StegoProxy placement to avoid the abuse of a webserver as a steganographic
mailbox

transport hidden information using more than one carrier. As an example,
a text may have embedded information in the number of spaces it has or in
the usage of uppercase letters.

Stegno Unit Sanitizers

A Sanitizer S; removes the steganographic information that may be trans-
mitted through a carrier j. In order to remove all possible steganographic
communications through the carrier j a sanitizer may implement more than
one sanitization process. We define a targeted sanitization process (as in tar-
geted steganalysis) as the process that removes, from a steganographic unit
SU;, information hidden through a specific steganographic algorithm. A blind
sanitization process is defined as the process that removes information hid-
den in a specific carrier j independently of the algorithm used. If a sanitizer
includes more than one sanitization process, they must be executed sequen-
tially over each steganographic unit (Figure 4). Both kinds of sanitization
processes must take into account the MRF when performing their modifica-
tions to the steganographic unit. Additionally, as a steganographic unit can
hide information in more than one information carrier, some steganographic
units may have to pass through several sanitizers. In such a case, sanitizers
are also applied sequentially.

HTTP Assembler

This component assembles all sanitizated steganographic units and builds
back the HTTP message. The sanitized HTTP message is then delivered to
its original recipient.

16



5.4. HTTP Message Sanitization Process

Formally, the process performed by StegoProxy is described in the fol-
lowing and in Figure 4:

HTTP
Message

The HTTP message M is disassembled by the Inspector [ in stegano-
graphic units: I(M) = {SUy, SUs, ..., SU;}.

Each steganographic unit may hold different carriers SU; = {C}, Cy, ..., C;}.

A Sanitizer S; deletes hidden information on a specific carrier j. A san-
itizer is composed by a set of sanitization processes (targeted or blind)
which are applied sequentially S; = {S5},,S5,,...,95;,, }-The process of
applying a sanitizer S; to a steganographic unit removes that carrier
from its steganographic payload: S;(SU;) = S;({C1,Cs,...,C;}) =
{01, 02, ey SJ<C])} — {Cl, 02, ey Cj—l}

A steganographic unit SU; is passed through its corresponding sani-
tizers S, Ss,...,S; according to their carriers, resulting in a sanitized
steganographic unit SSU;. Sanitizers are to be applied sequentially:
SSU; = S;(...52(51(SU;)) ...). Sanitizers may be not deterministic
(i.e. adding random noise to steganographic units).

Once all steganographic units have been sanitized, the Assembler A
ensembles again the HT'TP message using all steganographic sanitized

units: A(SSUy, SSUy, ..., SSU;) = M,

Stego-Unit, Sanitized Stego-Unit,

-
Sanitizer, Sanitizer,
5

'

2 7

Stego-Unit, Sanitized Stego-

C Cs
Sanitizer, Sanitizer,
SC

2

Unit,

i

Assembler Message

"
N @

Stego-Unit; Sanitized Stego-Uni

SG;
Sanitizer; " Sanitizer, .

C, SC,

Figure 4: StegoProxy components and process diagram

Sanitized HTTP



5.5. Implementation

In order to evaluate the validity of our proposal, we have implemented
StegoProxy as an HTTP Proxy. This implementation, in Java, is a proof-
of-concept tool, not focused on providing optimum performance, despite the
fact that StegoProxy is able to handle several HTTP request at the same
time, as a standard HTTP Proxy®. Our implementation works according to
the description given in Section 5.4: each HTTP message is disassembled in
steganographic units. Each Unit is sanitized, and the resulting message is
reassembled and sent to its destination. Our implementation allows filtering
both incoming and outgoing HT'TP messages.

5.5.1. Implemented Sanitizers

StegoProxy design allows the usage of sanitizers for any kind of MIME
types and textual information in HTTP Headers. Nevertheless, our imple-
mentation is focused on eliminating steganographic content in images, which
is the most popular steganographic carrier. Specifically we focus on elim-
inating least significant bit (LSB) steganography on BMP, JPG and GIF
images (Petitcolas et al., 1999) together with steganography based on GIF
shuffling (Kwan, 2003). Additionally, we have included a sanitization process
for different headers such as Server, User Agent, etc. Obviously, our imple-
mentation can benefit from the design of more sanitizers, something we plan
to continue doing for improving the tool.

LSB BMP. Least significant bit techniques modify the least significant bits
of a certain part of an image to embed information. Embedded informa-
tion (which is usually encrypted) introduces statistical changes in the least
significant bits that makes it possible to detect it (Fridrich et al., 2001).
However, several approaches such as randomization of the embedding loca-
tion and reducing the image capacity can be used to difficult the detection
of steganographic content using LSB in BMP images (Mielikainen, 2006).
Our LSB BMP sanitizer rewrites randomly the 2 least significant bits of
the three components of random selected pixels. One quarter of the image
pixels are randomly rewritten. Under these constraints, the probability of
an image pixel of not being modified by our implemented sanitizer would be

Prot modified = Pembedding * (1 - poverwritting) where Pembedding is the prObablhty

StegoProxy is available at http://stegoproxy.sourceforge.net/

18



of embedding information into one pixel of the image and poyerwritting 18 the
probability of overwriting the least 2 significant bits of a pixel.
Our sanitizer overwrites a quarter of the total number of pixels pyot modi fied =

Dembedding - 0, 75.  Therefore, in this scenario the probability of an image

izels o
not modified

where pizels is the number of pixels in the image.

not having any pixel with hidden information modified is
(pembedding * O, 75)

pizels

LSB JPG. Least significant bit steganography in JPG format uses the same
philosophy as the LSB on BMP images, but instead changes the least sig-
nificant bits on the DCT transforms to embed information. In our sanitizer,
we overwrite the 2 least significant bits of the bitmap generated by the BMP
image as in the LSB BMP, and compress again the generated image. This
modifies the DCT coefficients eliminating the possible hidden information.
Modifications to the least significant bits on JPG images have more impact
than modifications performed on same bits of BMP images. This is per-
fectly natural, due to the smaller degree of redundancy due to the higher
compression.

GIF. The Graphics Interchange Format (GIF) enables 256 color images. In
a GIF image, first a set of 256 colors is defined as an index. Each pixel is
mapped to the color index using a byte. When using LSB GIF steganogra-
phy, the least significant bits used to define a color in the index are changed,
thus, changing all the appearance of all pixels pointing to that color. As GIF
images usually include a very specific set of colors, the detection of stegano-
graphic images using this technique is difficult. We avoid the usage of GIF
steganography by overwriting with random information the least significant
bits of the defined colors.

Another steganographic technique used in GIF images is modifying the
order of the 256 color index. Modifying color index can be used to encode
information and does not change the real appearance of the image, as pixels
are modified to point to the new color index. To defeat this steganographic
technique, we randomly shuffle the color index, eliminating any possible in-
formation encoded in the order of the colors.

6. Evaluation

We have evaluated the efficacy and efficiency of StegoProxy. In terms of
efficacy, we evaluate if StegoProxy is able to remove steganographic content

19



from images sent through HTTP to web services. In terms of efficiency, we
have measured the delay that the HT'TP sanitization process introduces in
the HT'TP message exchange process.

6.1. Security Analysis

The proposed framework allows to sanitize both incoming and outgoing
HTTP connections. Under the presented scenario, an attack to our proxy
can be considered successful if any user is able to establish a covert commu-
nication channel through the HT'TP protocol. We have identified three main
attacks that may lead to this situation: denial of service attacks, usage of non
identified or removable information carriers and circumventing StegoProxy.

A denial of service (DoS) attack tries to interrupt the authorized access of
legitimate users to a resource or server. A DoS could overload StegoProxy in
such a way that it is not able to sanitize connections in real time, drastically
slowing the navigation speed. To avoid being unable to use a fundamental
network protocol, StegoProxy should be disabled, being the HTTP traffic
unchanged. This kind of attack, when performed outside the organization,
could be detected using security solutions such as Intrusion Detection Sys-
tems (IDS). An attack of such kind from inside the organization would be
infeasible, as it would leave traces on network systems that could lead easily
to the inside attacker.

Another way to stop StegoProxy from hampering the creation of covert
channels through HTTP would be to use HT'TP fields which modification is
beyond the MRF for HTTP. In (Feamster et al., 2002), authors propose the
usage of the Uniform Resource Locator (URL) of each request to insert hidden
information. As any change in the URL is beyond the MRF, StegoProxy
can not protect against this kind of covert channel. Server responses used
images as hidden information carrier. Our current framework is able to
eliminate hidden content from that carrier. Nevertheless, eliminating the
server response covert channel does not forbid a user to transmit sensitive
information outside the boundaries of the organization without being noticed.
In (Feamster et al., 2002) the URL covert channel was used to hide censored
URLs. Using their scheme authors required an average of 4 HTTP requests
to hide an URL. Therefore, the transmission of sensitive information would
require a huge number HTTP request to the same server.

In our scenario description (Section 5.1) we specify that the attacker does
not have control over the network configuration. This does not allow him to
configure his system to avoid the StegoProxy. Nevertheless, HT'TP messages

20



could be encapsulated through other protocols such as DNS (Horenbeeck,
2006). Using other protocols for such a purpose could be the same as us-
ing them as covert channels, as this kind of behavior is not authorized by
the organization. Applying the proposed framework to those protocols or
restricting its usage through firewall rules would enforce that all HT'TP mes-
sages pass through StegoProxy.

6.2. Experimental Setup

Our experimental setup covers the first mentioned scenario. That is, a
malicious employee tries to steal information from its organization using a
steganographic program to hide information into images and then transmit
those images to a web service. In this scenario, the proxy will be placed
at the organization gateway filtering all the outgoing traffic. The second
scenario, in which a web server is protected against unfair use, is equivalent
to the first one with the only difference that instead of sanitizing requests,
StegoProxy processes web server responses.

To perform our tests we used 5 images. For each image, we embedded a
random message using ”Steghide” and ”Outguess” (Table 1). All generated
images were uploaded to Twitpic® with and without using the stegoproxy.
Figure 5 shows the original image used in our experiments along the ver-
sions with hidden information through the aforementioned steganographic
programs.

We measured the time it took to complete the POST request when us-
ing and not using StegoProxy. For the experiments performed with Stego-
Proxy, we also calculated the time it took to dissemble the HTTP requests,
to sanitize and to ensemble them again. Figure 6 shows graphically the
aforementioned time gaps. Each image upload was repeated 5 times. In
our experiments, StegoProxy runs on a Core 2 Duo machine at 3 Ghz while
requests are generated by other computers in the same network segment.

6.3. Results

All images sent to Twitpic were later downloaded to check for hidden
content. We were unable to extract the hidden content from images sent
through StegoProxy. Results show that StegoProxy is able to eliminate

STwitpic is a image service for twitter that enables to store images linked to a Twitter
account.

21



Table 1: Test images features

Original Size | Outguess Size | Steghide Size | Pixel Size
Image 1 2,2 MB 837,7 KiB 2,2 MB 2592x1936
Image 2 2,0 MB 746,3 KiB 2,0 MB 2592x1936
Image 3 2,5 MB 938,8,3 KiB 2,5 MB 1936x2592
Image 4 2,1 MB 820,1 KiB 2,1 MB 2592x1936
Image 5 1,9 MB 708,5 KiB 1,9 MB 2592x1936

Original Outguess Steghide

Figure 5: Example of image used during the experiments (Image 3) in its original form,
with embedded information through Outguess and with embedded information through
Steghide.

steganographic content from images transferred through the network without
introducing any human perceptible distortion on sanitized images. However,
the sanitization process increased significantly the time required to upload
the images to Twitpic.

Figure 7 shows the average time measured with the three kinds of images
used during the experiments. Approximately, the image upload process takes
up to three times more. Although Outguess images are smaller in file size, the
sanitization times is very similar to other images as the sanitization process
does not depend on the file size but on the number of pixels.

Although this result may hinder the feasibility of our approach, images

22



Client StegoProxy Twitpic

Diassembly time

Sanitization time

N r—r—

Sanitized Post request

m

Post response, Assembly time
time

Response
generation
time

\e—”’@(

Figure 6: HTTP message process during the experiments and measured time gaps

used during the experiments were up to 2,5 MB. Using smaller images would
reduce the amount of time required for sanitization. Additionally, an im-
proved implementation or its usage on a specific purpose machine would ob-
viously improve the measured results by a large margin. It is also important
to note that StegoProxy can be parallelized in multiple machines.

7. Conclusions and Future Work

In this work we address the usage of steganography over popular network
protocols such as HTTP. We have proposed a framework to limit the usage of
steganography and covert channels through HT'TP. Using steganography over
HTTP could allow malicious employees to steal sensitive information from
their organizations. Steganography over HT'TP could also be used to control
botnets and transmit user sensitive information. Depending on the scenario,
HTTP steganography can take advantage of certain web services such as
photo sharing sites as remote storage, using the aforementioned services for
unauthorized purposes. However, current security policies can not block this
kind of covert channels effectively, as the HTTP protocol is almost essential

23



16000

14000

12000

10000 ——

8000 ————  moOriginal
u Steghide
= Outguess

miliseconds

6000

4000
2000
0

- Total Pr Assembly goProxy - Total time
Disassem! blyume Sanitization time

Figure 7: Average times measured during StegoProxy evaluation.

for network communications and Internet connectivity.

We have proposed a general framework that reduces the steganographic
possibilities of the HT'TP protocol. Our framework allows to implement dif-
ferent sanitizers that eliminate hidden content from any kind of information
transmitted through HTTP. Although our framework reduces drastically the
amount of information that can be sent covertly, it does not eliminate all
covert channels. Low bandwidth covert channels are still available. Our ap-
proach allows to control both incoming and outgoing HTTP requests, being
able to mitigate the malicious insider and the computer misuse risk.

Our evaluation shows that the usage of StegoProxy introduces perceptible
delays to users communications. Nevertheless, our implementation is far
from perfect. An improved (non Java-based) implementation and a better
hardware environment would significantly increase the overall performance
of our implementation. On the other hand, our main aim was achieved:
We were unable to recover hidden information from images sent through
StegoProxy.

Our future work will involve the extension of this approach to other com-
munication protocols such as SMTP, P2P protocols, etc. Additionally, im-
plementation of new sanitizers would help to provide protection against more

24



information carriers.

We believe this work could be useful to protect organizations from attacks
such as information theft, also providing unaware intermediaries (such as web
servers) a mean to protect against an unauthorized usage of their services.

References
United States of America vs Anna Chapman and Mikhail Semenko. 2010.

Ahsan, K., Kundur, D.. Practical data hiding in TCP/IP. In: Proc.
Workshop on Multimedia Security at ACM Multimedia. volume 6; 2002.
http://ee.tamu.edu/~deepa/pdf/acm02.pdf Accessed on April 2011.

Bell, G., Lee, Y.K.. A Method for Automatic Identification of Signatures
of Steganography Software. IEEE Transactions on Information Forensics
and Security 2010;5(2):354-358.

Bender, W., Gruhl, D., Morimoto, N., Lu, A.. Techniques for data hiding.
IBM Systems Journal 1996:35(3):313-336.

Burnett, S., Feamster, N., Vempala, S.. Chipping away at censorship
firewalls with user-generated content. In: Proceedings of the 19th USENIX
conference on Security. USENIX Association; USENIX Security’10; 2010.
p. 29-45.

Chakinala, R., Kumarasubramanian, A., Manokaran, R., Noubir, G.,
Rangan, C., Sundaram, R.. Steganographic communication in ordered
channels. In: Information Hiding. Springer Berlin / Heidelberg; volume
4437 of Lecture Notes in Computer Science; 2007. p. 42-57.

Chandramouli, R., Kharrazi, M., Memon, N.. Image steganography and
steganalysis: Concepts and practice. In: Digital Watermarking. Springer
Berlin / Heidelberg; number 2939 in Lecture Notes in Computer Science;
2004. p. 204-211.

Chapman, M., Davida, G.. Hiding the hidden: A software system for
concealing ciphertext as innocuous text. In: Information and Communica-
tions Security. Springer Berlin / Heidelberg; volume 1334 of Lecture Notes
in Computer Science; 1997. p. 335-345.

25



Cox, I.J., Miller, M., Bloom, J., Fridrich, J., Kalker, T.. Digital water-
marking and steganography. 2nd ed. Morgan Kaufmann, 2008.

Dyatlov, A., Castro, S.. Exploitation of Data Streams Authorized by a
Network Access Control System for Arbitrary Data Transfers: Tunnel-
ing and Covert Channels over the HT'TP Protocol. Technical Report;
Gray-World; 2003. http://gray-world.net/projects/papers/covert_
paper.txt Accessed on February 2011.

Feamster, N., Balazinska, M., Harfst, G., Balakrishnan, H., Karger, D..
Infranet: Circumventing Web Censorship and Surveillance. In: Proceed-
ings of the 11th USENIX conference on Security. USENIX Association;
USENIX Security’02; 2002. p. 247-262.

Fisk, G., Fisk, M., Papadopoulos, C., Neil, J.. Eliminating steganography
in internet traffic with active wardens. In: Information Hiding. Springer
Berlin / Heidelberg; volume 2578 of Lecture Notes in Computer Science;
2003. p. 18-35.

Fridrich, J., Goljan, M.. Practical steganalysis of digital images-state of
the art. In: Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series. volume 4675 of Presented at the Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference; 2002. p. 1-13.

Fridrich, J., Goljan, M., Du, R.. Reliable detection of LSB steganography
in grayscale and color images. In: Proceedings of ACM Workshop on
Multimedia and Security. 2001. p. 27-30.

Geetha, S., Sindhu, S., Gobi, S., Kannan, A.. Evolving GA classifiler
for audio steganalysis based on audio quality metrics. In: Intelligent Sens-
ing and Information Processing, 2006. ICISIP 2006. Fourth International
Conference on. ICISIP; 2006. p. 105-108.

Grothoff, C., Grothoff, K., Alkhutova, L., Stutsman, R., Atallah, M..
Translation-based steganography. In: Information Hiding. Springer Berlin
/ Heidelberg; volume 3727 of Lecture Notes in Computer Science; 2005. p.
219-233.

Hernandez-Castro, J., Tapiador, J., Palomar, E., Romero-Gonzalez, A..
Blind steganalysis of mp3stego. Journal of Information Science and Engi-
neering 2010;26(5):1787-1799.

26



Horenbeeck, M.V.. Deception on the network: thinking differently about
covert channels. In: Proceedings of 7th Australian Information Warfare
and Security Conference. 2006. p. 174-184.

Johnson, N., Jajodia, S.. Exploring steganography: Seeing the unseen.
IEEE computer 1998;31(2):26-34.

Jones, E.. Legitimate sites as covert channels: An extension to the concept of
reverse http tunnels. 2001. http://gray-world.net/papers/lsacc.txt
Accessed on February 2011.

Kartaltepe, E.J., Morales, J.A., Xu, S., Sandhu, R.. Social Network-Based
Botnet Command-and-Control: Emerging Threats and Countermeasures.
In: Proceedings of the 8th international conference on Applied cryptogra-
phy and network security. ACNS’10; 2010. p. 511-528.

Kwan, M.. GIFShuffle. 2003. http://www.darkside.com.au/gifshuffle/
/ Accessed on February 2011.

Lee, I.S., Tsai, W.H.. A new approach to covert communication via PDF
files. Signal Processing 2010;90(2):557-565.

Liu, Y., Corbett, C., Chiang, K., Laboratories, S.N., Archibald, R.,
Ghosal, D.. SIDD: A Framework for Detecting Sensitive Data Exfiltration
by an Insider Attack. In: System Sciences, 2009. HICSS ’09. 42nd Hawaii
International Conference on. 2009. p. 1-10.

McGreal, C.. FBI breaks up alleged Russian spy ring in deep cover. 2010.

Mielikainen, J.. LSB matching revisited. Signal Processing Letters, IEEE
2006;13(5):285-287.

Park, B., Park, J., Lee, S.. Data concealment and detection in Microsoft
Office 2007 files. Digital Investigation 2009;5(3-4):104-114.

Petitcolas, F.A.P.. MP3Stego. 1998. http://www.petitcolas.net/
fabien/steganography Accessed on February 2011.

Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.. Information hiding: A
survey. In: Proceedings of the {IEEE}. IEEE; volume 87; 1999. p. 1062—
1078.

27



Provos, N.. Outguess. 2001. http://www.outguess.org/ Accessed on
February 2011.

Schear, N., Kintana, C., Zhang, ., Vahdat, A.. Glavlit: Preventing
Exfiltration at Wire Speed. In: Proc. 5th Wksp. Hot Topics in Networks
(HotNets). 2006. .

van Schyndel, R., a.Z. Tirkel, , Osborne, C.. A digital watermark. In: Image
Processing, 1994. Proceedings. ICIP-94., IEEE International Conference.
IEEE Comput. Soc. Press; volume 2; 1994. p. 86-90.

Shirali-Shahreza, M.. Stealth Steganography in SMS. In: Wireless and
Optical Communications Networks, 2006 IFIP International Conference
on. 2006. p. 11-13.

Simmons, G.. The history of subliminal channels. IEEE Journal on Selected
Areas in Communications 1998;16(4):452-462.

Ulieru, M., Paul, R., Khan, M., Potdar, V., Chang, E.. e-Forensics
Steganography System for Terrorist Information Retrieval. Proceedings of
NetObject Days 2004 2004;19:28-30.

Wayner, P.. Mimic Functions. Cryptologia 1992;16(3):193-214.

Whitehead, A.. Towards eliminating steganographic communication. In:
Proc. 3rd Annual Conference on Privacy, Security, and Trust. 2005. .

Zander, S., Armitage, G., Branch, P.. A survey of covert channels and
countermeasures in computer network protocols. TEEE Communications
Surveys & Tutorials 2007;9:44-57.

Zax, R., Adelstein, F.. FAUST: Forensic artifacts of uninstalled steganog-
raphy tools. Digital Investigation 2009;6(1-2):25-38.

Zhong, §S., Cheng, X., Chen, T.. Data hiding in a kind of PDF texts
for secret communication. International Journal of Network Security
2007;4(1):17-26.

28



