
Detection of App Collusion Potential Using Logic

Programming

Jorge Blasco, Thomas M. Chen, Igor Muttik and
Markus Roggenbach

April 26, 2018

Abstract

Android is designed with a number of built-in security features such as
app sandboxing and permission-based access controls. Android supports
multiple communication methods for apps to cooperate. This creates a
security risk of app collusion. For instance, a sandboxed app with permis-
sion to access sensitive data might leak that data to another sandboxed
app with access to the internet. In this paper, we present a method to
detect potential collusion between apps. First, we extract from apps all
information about their accesses to protected resources and communi-
cations. Then we identify sets of apps that might be colluding by using
rules in first order logic codified in Prolog. After these, more computation-
ally demanding approaches like taint analysis can focus on the identified
sets that show collusion potential. This ”filtering” approach is validated
against a dataset of manually crafted colluding apps. We also demon-
strate that our tool scales by running it on a set of more than 50,000 apps
collected in the wild. Our tool allowed us to detect a large set of real apps
that used collusion as a synchronization method to maximize the effects
of a payload that was injected into all of them via the same SDK.

1 Introduction

Smartphones are pervasive in modern everyday life. The number of smartphones
in use is predicted to grow from 2.6 billion in 2016 to 6.1 billion in 2020 [1]. One
reason for this fast adoption is the extensive ecosystem of apps for taking photos,
sending messages, banking, and millions of other familiar uses. Smartphones
hold a great deal of personal information (e.g., photos, finances, credentials,
messages) making them very appealing targets for criminals who commonly use
malicious apps to steal sensitive information [2], extort users [3], or misuse the
device services for their own purposes [4].

To mitigate these threats, mobile operating systems offer a multi-sandbox
environment where each app is executed in isolation from the rest. This isolation
is intended to limit the effects of any potential malicious activity of an app. A

1

ar
X

iv
:1

70
6.

02
38

7v
1

 [
cs

.C
R

]
 7

 J
un

 2
01

7

way to get around this restriction is to execute a privilege escalation exploit
or persuade the user to grant additional permissions to the app which usually
works quite well because users are generally unaware of the risks associated with
granting permissions to apps [5].

These restrictions can also be circumvented by app collusion. In collusion,
the malicious activity is split across multiple apps coordinated through inter-
app communications (IAC). This kind of attack is possible because sandboxed
systems, such as Android, are designed to prevent threats from individual apps.
However, they do not restrict or monitor inter-app communications and there-
fore they fail to protect from multiple apps cooperating in order to achieve a
malicious goal. Most malware analysis systems, such as those that power an-
tivirus software for smartphones, also check apps individually. While collusion
is not common today, it opens an avenue to circumvent the security of Android
and other sandboxed operating systems. And the risk of attackers taking this
”collusion avenue” is likely to grow because of constant enhancements in efficacy
of static and dynamic analysis of individual apps as well as in calculating their
reputations.

1.1 Contributions

In this paper, we present a methodology to detect the potential for app collusion
by using logic programming. For each app, we extract what we call an ASR
(Access-Send-Receive) signature. Then Prolog rules are used to characterize
app collusion behaviours. These rules reflect two aspects of collusion: access to
protected resources and communication channels between apps. Using the rules
and the set of ASR signatures codified as Prolog facts, it is possible to obtain
a list of potentially colluding app sets from large datasets of apps. We have
validated the approach against a set of manually crafted colluding apps and
then applied it to another set of more than 50,000 apps collected in the wild.
Our approach has allowed us to shed light on how apps in the Android ecosystem
communicate and it allowed us to identify a set of apps in the wild all having
an embedded malicious SDK that used collusion to maximize the effects of a
malicious payload. As with any rule-based method, our approach has limitations
to known types of collusion. In principle, an approach such as anomaly detection
might be able to detect new types of collusion that known rules can not, but it is
currently not possible to test or compare anomaly detection until new collusion
attacks occur (or become known).

The remainder of this paper is structured as follows. Section 2 reviews the
Android security model focusing mainly on the aspects related to app collusion.
In Section 3 we propose a definition of app collusion and describe possible com-
munication channels that could be used by colluding apps. Section 4 describes
our approach in detail and gives validation of our approach against a set of
manually created colluding apps. Section 5 elaborates on how our method can
scale up. Section 6 offers experimental results with a large dataset of apps in the
wild. Section 7 reports a group of colluding apps found in the wild, that were
flagged by our method. To the best of our knowledge, this is the first example

2

of app collusion found in the wild. Section 8 reviews previous work done to
detect and protect against app collusion.

2 The Android Operating System

The Android operating system model is designed to protect users, apps, the
device and the network from malicious parties. By default, any third party app
is considered untrusted by the OS and runs inside a sandbox that isolates it
from any sensitive resource or other apps. Until Android 4.3, the sandboxing
mechanism was implemented by assigning a different Linux user id (UID) to each
app and configuring file permissions accordingly. Since Android 4.4 SELinux
domains are used in addition to the Linux UID so apps can only access files
inside its sandbox, as these are the only ones in its domain. Access to sensitive
resources outside the app sandbox is possible by using APIs provided by the
operating system. Calls to these APIs are managed by a permission system,
which has a deny-by-default policy. Apps that want to access sensitive resources,
must include a permission declaration inside its AndroidManifest.xml file. When
the app is being installed (in Android versions below 6.0), the system will ask
the user to accept the permissions used by the app before proceeding with
the installation. At this point, the user must accept or deny all permissions
requested by the app. Starting with Android 6.0, apps can ask for permissions
at runtime and users have the choice of granting or denying each permission.
However, permissions must still be declared in the manifest file. For a more
detailed description of Android security features, we refer the reader to [6, 7].

2.1 App Components

Android apps are built with the following components:

• Activities represent screens of the user interface and allow the user to
interact with the app. Activities run only in the foreground. Apps are
generally composed of a set of activities.

• Services execute operations in the background. They are generally used
by other components of the app to perform long-running tasks: listening
to incoming connections, downloading a file, etc.

• Broadcast receivers respond to messages that are sent through Intent ob-
jects, by the same or other apps.

• Content providers manage access of other apps to the app’s own data.
Apps with content providers enable other apps to read and write their
local data.

In order to be reachable by other apps, components must be declared as
exported in the app manifest file.

3

2.2 Communications

Besides the standard Unix files, sockets, etc., Android offers three inter-process
communication (IPC) mechanisms:

• The Binder is a remote procedure call mechanism designed to enable fast
and efficient IPC between processes that run inside a sandbox. The Binder
Framework uses a server-client architecture. It is implemented as a Linux
driver, allowing communications between sandbox boundaries.This allows
the operating system to mediate communication across sandbox bound-
aries. The rest of the Android IPC (Intents and Content Providers) are,
in fact, abstractions based on the Binder.

• An Intent is a messaging object which is used to request actions from
other apps’ components. These can belong to the same or different apps.
Intents can be explicit or implicit. Explicit intents target specific activities
or services. Implicit intents target generic actions that can be performed
by many different activities (send a message, open a web link, etc.). Activ-
ities, services and broadcast receivers declare the intents which they can
handle by declaring a set of IntentFilters. For activities and services,
intent filters must be declared in the app’s manifest. Broadcast receivers
can also register their intent filters programmatically during execution.

• Content Providers are used to offer other apps a method to access their
own structured data. Content providers store information in one or more
tables, similarly to relational databases. Apps access data of content
providers using ContentResolver objects. A content provider offers meth-
ods, which can be called by other apps, not only to read data, but also to
update, create and delete information encapsulated in the content provider
object.

None of these three IPC mechanisms, which all are standard in Android, is
covered by the mandatory access control offered by SELinux [8]. As a result,
apps can share any kind of information by using standard IPC without any
restriction. To avoid security problems, Android allows apps communicating
through IPC to request specific permissions to any app that wants to com-
municate with them. As an example, Android includes a Contact Provider to
interact with the device’s contact list. Apps accessing this provider need to de-
clare READ_CONTACTS or WRITE_CONTACTS permissions in their manifest. Similarly,
apps using Intents to start phone calls require the CALL_PHONE permission.

Unfortunately, Android does not enforce this protection mechanism. It is left
to app developers to decide if they want to apply it. Consequently, permission-
protected resources are potentially exposed. This fact can be exploited to build
colluding apps which access sensitive resources without permission. Apps might
also communicate in order to aggregate permissions necessary to perform mali-
cious actions.

4

3 App Collusion

The first mention of app collusion was Soundcomber, a proof-of-concept mal-
ware described in 2011 [9]. It was comprised of two apps which used inter-app
communications to steal the user’s banking credentials. Soundcomber shows
the limitations of the Android permission model to protect against apps that
collude to aggregate their permissions [10]. Although collusion has inherently a
malicious component, sometimes it is hard to distinguish collusion from collab-
oration.

A frontal attack on detecting collusion of pairs, triplets, and larger sets of
Android apps is not practical given the search space. Thus, in this work, we
aimed to develop an effective filtering system to quickly analyse large app sets to
detect collusion potential so a security analyst or other more computationally
expensive automatic tools can focus their efforts on the most suspicious app
sets.

3.1 Definition of Collusion Potential

In this work, collusion refers to the ability of a set of apps to carry out an attack
through collaboration. We assume that colluding apps can carry out the same
malicious actions as single apps such as information theft, money theft, service
misuse or sabotage [11].

To the best of the authors’ knowledge there is no evidence that collusion can
create new threats in the mobile scenario, as they depend on the assets, which
remain constant. However, collusion can change how attacks are executed. In
the Soundcomber scenario, collusion is used to make an information leakage
attack more stealthy. Additionally, malicious apps can also take advantage of
collusion just for coordination and synchronization. Considering this, we define
collusion potential based on the following:

A1: Actions are operations provided by the operating system (Android) API.
We consider three kinds of actions. Access actions involve access to
system-protected resources (e.g. record audio). Send actions allow apps
to send information to other apps on the same device. Receive actions
allow apps to receive information from other apps. Actions are grouped in
what we call the Access-Send-Receive (ASR) signature of an app, denoted
by ASRapp.

A2: Actions can be characterized by a number of attributes such as permis-
sions, API calls, etc. In this work we use static analysis to extract at-
tributes.

A3: A threat t can be described by a sequence of actions t = 〈a1, a2, · · · , an〉.
In this work, we consider the threats to be the ones that can be created
by single apps. Let τ denote the set of all these threats.

5

Definition 1 (Collusion Potential) A set S consisting of at least two apps
has collusion potential if the apps in S together can execute a sequence seq of
actions such that:

1. seq restricted to Access actions is a sequence in τ ; furthermore, seq is
collectively executed involving all apps in S, i.e., each app in S executes
at least one action in seq; and

2. considering the Send and Receive actions in seq, all apps in S are con-
nected through communication channels. That is, it is possible to build a
directed graph G = (S,C) where the elements of C are pairs of Send and
Receive actions, in which there are no unreachable nodes, i.e. apps in S.

Our definition of collusion potential highlights two steps required for col-
lusion: execution of a malicious action (threat) and the need to communicate
between the apps executing these actions. Malicious actions and types of threats
that can be executed by smartphone malware have been extensively studied by
researchers [11, 12]. Due to the high level description of the actions it may hap-
pen that app sets marked as having collusion potential are taking advantage of
other apps (permission re-delegation attacks [13]) or just collaborating. In this
work we consider that both cases should be detected and highlighted as having
collusion potential. As already noted by other researchers [14], the difference
between a malicious or non-malicious behaviours can only be seen by comparing
the application descriptions, developer intentions (which are difficult to measure
by static analysis) and system implementations. So, in all these cases, apps can
exhibit the exact same behaviour, and therefore must be considered to have
collusion potential (i.e. in all three cases apps have the capability to collude).
It is up to the security analysis or the taint analysis tools executed when app
sets show collusion potential to decided whether one app is executing a permis-
sion re-delegation attack over another app, they are collaboration with the user
knowledge or they are actually colluding.

In the next section we review the main communication channels that can
be used by colluding apps. The development of the definition into a Prolog
program to detect collusion potential is described in section 4.

3.2 Communication Channels for App Collusion

Colluding apps require some form of communication to execute and/or synchro-
nize their actions. Colluding apps can use standard communication channels (as
described previously in Section 2) or stealthy communications (often also called
”covert communications”) to avoid being detected. The following communica-
tion mechanisms may be employed:

• Intents can be used by colluding apps to share information. Broadcast
receivers and services allow apps to exchange data without user interven-
tion.

6

• Malicious apps can use content providers as a dropbox to exchange in-
formation. Access to system content providers requires apps to request
permissions (e.g. WRITE_CONTACTS for the contact database).

• External storage of an Android device can also be used as a shared dropbox
to exchange information. Apps accessing the external storage need to
declare the READ_EXTERNAL_STORAGE or WRITE_EXTERNAL_STORAGE, depending
on the required access. Files in the external storage can be accessed using
the common file access API.

• Shared preferences are an Android feature that allows apps to store key-
value pairs of data. Although it is not intended for inter-app commu-
nication, apps can use key-value pairs to exchange information if proper
flags are defined (WORLD_READABLE or WORLD_WRITABLE) when accessing and
storing data. Since the adoption of SELinux apps cannot access the world
readable files of other apps, as they are confined to different SELinux
domains.

• Colluding apps can also use standard Unix sockets to communicate through
the local network interface. Communication between two apps that is me-
diated by an external server is not generally counted as collusion, because
the communication happens outside the device domain.

• Covert channels may take advantage of APIs or features offered by the
operating system to enable communication between processes [9, 15]. In
Android, this includes publicly readable and writable settings (e.g. volume
level) and capturing broadcast intents generated by the system. Addition-
ally, processes can take advantage of covert channels present in most com-
puting systems like file locks, process enumeration, free space and CPU
usage.

4 Detecting Collusion Potential

Mobile apps can be downloaded from the web or app markets such as “Google
Play.” These apps are analysed by market operators and anti-malware services
that constantly crawl these markets. A combination of static and dynamic
analysis techniques as well as statistical methods are used to establish reputation
and risk values for an app. However, all these techniques consider apps in
isolation and neglect to take into account other apps that could be installed
on the same device. This hinders the detection of possible collusion behaviours
from an appropriate combination of apps installed on the same device.

Our approach aims to extend app analysis services by also considering the
collusion potential of sets of apps; the reputation and risk of an app are measured
not only in terms of its own features, but also factoring in its capabilities when
installed with other apps on the same device.

To do so, for each app we extract the actions it is able to perform as ASR
signatures. These are described as Prolog facts. In a similar way, collusion

7

potential is described as a set of logic rules that are composed by Prolog facts.
Collusion rules can be applied to query for apps that may be potentially collud-
ing. A detailed view of the process is given in the following sections.

4.1 Extracting ASR Signatures

We extract ASR signatures by performing a static analysis of the app manifest
and app code. In this work we consider the usage of (i) implicit intents, (ii)
shared preferences and (iii) external storage for communication, i.e., a subset of
the channels listed in Section 3.2. Therefore, the ASR signature of an app is a
combination of all permissions, intents, shared preferences and external storage
channels that can be used by an app to send or receive information.

To analyse app code, we have extended Androguard [16], a reverse engi-
neering tool for Android apps written in Python1. Our extension looks up API
calls involved in the creation and broadcast of intents and broadcast receivers
and the access and modification of shared preferences files. Parameters that
specify the communication channel for each method are tracked back through
the code. We trace back the value of the action parameter for each broadcast
intent and corresponding intent filters. In the case of shared preferences, we
track the name of the shared preferences file. As with any static analysis tool,
our tool is not able to trace back values that are dynamically defined. In those
cases, we return the API call path that generates the value.

The app manifest is analysed to identify usage of external storage or static
broadcast receivers. We are not able to obtain the specific channel used by apps
through external storage. This requires identifying all API calls that can modify
the external storage file system. PScout is able to identify the Android library
API calls that require READ_EXTERNAL_STORAGE and WRITE_EXTERNAL_STORAGE per-
missions [17]. However, standard IO calls are not included in this mapping.
Therefore we have left this task for future work.

As an example, Table 1 shows the ASR signature of a simple artificial collud-
ing app that would send premium SMS messages. This app requires READ_SMS

to display the user’s SMS and SEND_SMS to send SMS. This permission is abused
to send SMS messages when an intent with the action sms is received. Details
about this app, and the rest of the apps created for validation purposes, can be
found on section 4.4.

4.2 Characterizing Collusion Potential with Logic Rules

Our approach to detect collusion potential utilises logic programming in Pro-
log. We have created a Prolog program, the ACiD (Application Collusion
Detection) rule set, that defines when a set of applications shows collusion po-
tential.

Access actions have been categorized into four high level actions: accessing
sensitive information; use an API that can incur a financial loss; control device

1Our code is available at https://github.com/acidrepo/collusion_potential_detector

8

https://github.com/acidrepo/collusion_potential_detector

Table 1: ASR signature of the SMS app (id 4) that is part of the Botnet group.
Aid4

Permissions
READ_SMS

SEND_SMS

Sid4 = ∅
Rid4

Intent
SMS_SENT

sms

services (e.g. camera); and send information outside the device. These actions
are characterised by permissions and API calls which are mapped to one or more
of the four high level actions. For example, an app that declares the INTERNET

permission will be capable of sending information outside the device:

uses(App, PInternet)→ information outside(App)

Similarly:

uses(App, PRead contacts) → sensitive info(App)

uses(App, PSend SMS) → money(App)

uses(App, PKill process) → control service(App)

Overall, in Android 4.3 35 permissions can be used to access sensitive in-
formation; 12 to send information outside the device; 3 to execute financially-
sensitive APIs; and 39 to control device services. The complete mapping of
permissions to actions can be found on the project repository.

Send and Receive actions are characterised by specific API calls offered by
the Android OS. For each we create a fact that describes that communication
action. When using Intents and SharedPreferences we are able to specify the
communication channel using the intent actions and preference file respectively.
As an example, if an app sends a BroadcastIntent with an action SEND_FILE we
consider the following:

send broadcast(App, Intentsend file)

→ send(App, Intentsend file)

We consider that two apps communicate if one of them is able to send and the
other to receive via the same channel.

send(Appa, channel) ∧ receive(Appb, channel)→
communicate(Appa, Appb, channel)

Note that communication is directed, i.e., information flows from Appa to Appb.

9

Finally, each of the threats is characterised by a sequence of actions. Our
threat set τ considers information theft, money theft and service misuse. Specif-
ically, we consider that two apps have collusion potential to execute an infor-
mation theft when one of them has access to sensitive information and commu-
nicates with another app which can do external communications:

sensitive info(Appa) ∧
information outside(Appb) ∧

communicate(Appa, Appb, channel) →
information collusion(Appa, Appb)

We consider that two apps have potential to collude for money theft when
one app has access to cost sensitive APIs and receives information from another
app:

money(Appb) ∧
communicate(Appa, Appb, channel) →

money collusion(Appa, Appb)

An internet connection in Appa would allow a server to send commands to
an app with access to cost sensitive APIs:

information outside(Appa) ∧
money(Appb) ∧

communicate(Appa, Appb, channel) →
money collusion(Appa, Appb)

In a similar sense, this same app could also send commands from a C&C
server to other apps that have access to device services:

information outside(Appa) ∧
control service(Appb) ∧

communicate(Appa, Appb, channel) →
service collusion(Appa, Appb)

4.3 ACiD Rule Set in Prolog

We have translated the ACiD rules into a Prolog program. These include the
rules required to identify communication paths (and specific channels) between
applications. Then, once the ASR signatures have been extracted from an app
set, they can be translated into Prolog facts to be part of the Prolog program
that is executed to find collusion potential.

For every permission used by an app a Prolog fact uses(app) is created.
For every channel sending information outside the app sandbox we generate a

10

send(app,channel) fact and recv(app,channel) for all channels receiving infor-
mation from outside the sandbox.

A Prolog predicate (q :- p) describes a logical rule of the form p → q.
Prolog uses modus ponens to evaluate queries and look for results. If p is true,
then it will consider q to be also true. The identification of communication
paths between apps is performed by using recursive Prolog predicates (Listing
1). The base case (first rule) identifies when two apps are communicating. This
is, if AppA sends information through Channel and AppB receives information from
the same channel, it means they communicate (comm_l(AppA,AppB,2,_,[]). The
recursive predicates (last two rules) add more apps to the communication path.
To avoid circular paths, all rules check if the app that is being analysed is
already a member of the path (nonmember).

comm l(AppA,AppB,2, ,[]) :− trans(AppA,Channel), recv(AppB,Channel), AppA\=AppB.
comm l(AppA,AppB,Length,[],[AppD|Rest]) :− Length > 2,trans(AppA,Channel),

recv(AppD,Channel), AppA\=AppD, PrevL is Length −1,
comm l(AppD,AppB,PrevL,[AppA],Rest), AppA\=AppB.

comm l(AppA,AppB,Length,Visited,[AppD|Rest]):− Length > 2, trans(AppA,Channel),
recv(AppD,Channel), AppA\=AppD, nonmember(AppD,Visited), PrevL is Length − 1,
comm l(AppD,AppB,PrevL,[AppA|Visited],Rest), AppA\=AppB.

Listing 1: Communication rules

The channel rules allow, once a collusion path has been obtained, to extract
the list of communication channels used by the apps (Listing 2). Similarly, the
first predicate (first rule) saves the channel used when two apps are commu-
nicating. The second predicate looks recursively for the rest of the channels
These rules facilitate the security analyst task to investigate how the potential
collusion can happen.

chanl(AppA,AppB,[],Channel) :− trans(AppA,Channel),recv(AppB,Channel), AppA\=AppB.
chanl(AppA,AppB,[AppD|Rest],[Channel|Channels]) :− trans(AppA,Channel),

recv(AppD,Channel), chanl(AppD,AppB,Rest,Channels).

Listing 2: Channel identification rules

4.4 Validation

We have performed an initial validation by running it through a set of eleven
specifically developed artificial apps that include colluding and non-colluding
apps2 which are summarized in Table 2. We have decided to use apps developed
by us for two reasons. First, to the best of our knowledge, no colluding apps
have been identified in the wild yet. Thus, we lack a set of previously known
positive examples. Second, even if there were apps identified as colluding, we
could not be 100% certain on non-collusion: even an app downloaded from a
reputable market might be colluding. i.e., we lack a set of previously known
negative examples.

2Due to the malicious nature of the apps, they are only available upon request.

11

Table 2: Summary of colluding app groups included in our basic app set.
Group Id Threats Permissions Colludes with Channel
Document 1

Information Theft
READ_EXTERNAL_STORAGE 2 Shared Prefs.

Extractor 2 INTERNET 1 Shared Prefs.

Botnet

3
Information theft

INTERNET 4,5,6 Intents

4
READ_SMS

3 Intents
Service misuse

SEND_SMS

5 READ_CONTACTS 3 Intents

6 Money theft
GET_TASKS

3 Intents
KILL_BACKGROUND_PROCESSES

Contact
7

Information theft

READ_CONTACTS 8,9 Intents

Extractor
8 WRITE_EXTERNAL_STORAGE 7,9 Ext. Storage

9
INTERNET

7,8
Intents

READ_EXTERNAL_STORAGE Ext. Storage

Non-colluding
10 - - - -
11 - INTERNET - -

There are nine colluding apps that have been developed to cover all collusion
scenarios described in Section 3. They can be categorized in three groups:

• The Document Extractor group is composed of two apps. One of the
apps in the group looks for sensitive documents (txt, pdf, db, xls, etc.) on
the external storage (app1). This information is shared with app2 using the
shared preferences. The information received is sent to a remote server.

• The Botnet group is composed of four apps. One of the apps (app4)
acts as a relay that receives orders from the command and control center.
The other colluding apps execute commands depending on their requested
permissions. They are capable of sending SMS messages (app4), stealing
the user’s contacts (app5) and starting and stopping tasks (app6). This
group uses intents as communication channel.

• The Contact Extractor group is composed of three apps. This group
sends the device’s address book to a remote server. The first app (app7)
reads the contacts from the address book, the second (app8) forwards them
to the third (app9), which sends them to the Internet. This group uses
intents and the external storage as communication channels.

In addition to the colluding apps, the validation set includes two non-colluding
apps. These are a document viewer (app10) and an information sharing app
(app11). The first app displays different file types on the device screen and uses
other apps (through an intent with the action android.intent.action.SEND) to
share their uniform resource identifier. The second app receives text (through
the same action) and sends it to a remote server.

12

4.5 Validation Run

Table 3 shows the results obtained from analysing the crafted colluding app
set. “Dark red club” entries show when we detect collusion potential. As an
example, the entry in row 1, column 2 means: the program detects that app1
sends information to app2, and these two apps collude to perform “information
theft”. As we take communication direction into consideration, the resulting
matrix is non-symmetric, e.g., there is no entry in row 2, column 1. Additionally,
our approach is able to identify transitive collusion attacks (i.e. app7 colluding
with app9 through app8).

Table 3: Collusion Matrix of the Prolog program. ♣ = Information theft. $
= Money theft. ♠ = Service misuse. ♣, $, ♠ = Benign showing collusion
potential.

app 1 2 3 4 5 6 7 8 9 10 11
1 ♣ ♣ ♣
2
3 $♣ ♠ ♠
4
5 ♣ ♣ ♣
6 ♣ ♣
7 ♣ ♣ ♣ ♣ ♣
8 ♣
9
10 ♣
11

‘Gold club” entries show apps flagged as having some collusion potential by
our approach but not colluding in reality. For instance, the entry in row 1, col-
umn 10 means: the program flags collusion of type “information theft” though
the set {app1, app10} is clean. However, they are just exchanging information.
As stated in our definition of collusion potential, some benign apps can share
access to sensitive resources (e.g. a location being shared from a maps app to
a social media app). As we consider all Android available channels as suitable
for collusion, in our first approach apps using common channels such as intents
with VIEW or SEND actions that are very commonly used in Android are also
considered to have collusion potential. However, it is unlikely to see apps using
these channels for collusion as other apps could have registered to receive the
same information. We have taken this fact into consideration when scaling up
our methodology (Section 5).

Overall, our approach identifies all colluding app sets but it also flags eight
cases with collusion potential where apps are just collaborating.

13

5 Scaling up

Our initial methodology takes an app set and finds all potentially colluding app
sets. This works as long as the app set to analyze is a reasonable size (i.e. the
number of apps that are regularly installed on a regular smartphone, about 20
to 30). However, if the number of applications to analyze is larger, scalability
problems arise.

5.1 Collusion Potential and Computational Complexity

Figure 1 shows an estimation of the maximum number of potentially colluding
sets depending on the size of the app set to be analyzed. These estimates
correspond to the possible combinations of k apps in a group of n apps.

10 20 30 40 50 60 70 80 90 100
100

101

102

103

104

105

106

107

108

Apps

P
o
te

n
ti
a
ll
y
c
o
ll
u
d
in

g
a
p
p
se

ts

colluding pairs
colluding triplets
colluding quartets
colluding quintets

Figure 1: Maximum number of potentially colluding app sets that can be found
depending on the size of the number of apps analyzed.

As the number of apps increases, the number of potentially colluding sets
increases exponentially. Therefore, if the analyzed apps show a high degree of
communication capabilities, the number of potentially colluding app sets will
become unmanageably large.

5.2 Managing Complexity

To address scalability, we improved the Prolog-based methodology considering
the way Android works. Android’s design philosophy strongly promotes the
use of intents and other IPC communications in order to improve user experi-
ence. Consequently, many communication paths detected by our method will
be benign, generating alarms for app sets that have collusion potential, but are

14

just collaborating. If we were able to identify and remove these benign commu-
nications, then the corresponding potentially colluding sets would be reduced
drastically.

We analyzed communication signatures generated by more than 50,000 apps
included in our experiment dataset (Section 6). Up to 40% of the analyzed apps
have the capability to read from and write to external storage. Our approach
does not identify specific files accessed in the external storage. Consequently,
our crude initial approach would consider all these apps to be capable of com-
municating with each other. However, this is not true and fails to represent their
real behaviour. We decided to leave out external storage as a communication
channel when scaling up our approach. Identification of specific files opened by
each app is left for future work.

Similarly, we filtered out some common intents used by apps to exchange
information. Specifically, we have removed the following intent-based commu-
nications3:

• Intents that can only be generated by the operating system. These can be
found in the Android Open Source Project Git page4. We have identified
253 intent actions in this category.

• Intent actions that are created by common and trusted third party appli-
cations such as Facebook, Dropbox, etc. These are sent by applications
that want to interact with these apps, but only the apps from the same
developer (Facebook, Dropbox, etc.) receive them. We can detect them
by inspecting intents sent and received by the clean apps of our data set
– c.f. Section 6.1 for details. Intents exhibiting this behaviour will be
received by one (e.g. Facebook) or a small number of apps (e.g. apps
implementing the Facebook API). To rule out such intents we measured
the amount of apps that send the intent divided by the ones that are able
to receive it:

cintent =
apps sendingintent
apps receivingintent

Any intent action included in the aforementioned apps or with a Cintent ≥
5 has been included in this list. We have obtained 693 intent actions to
filter by using this approach.

• Intents that are used to execute common tasks such as view a document
(android.intent.action.VIEW); send something (android.intent.action.SEND);
or open an application (android.intent.action.MAIN) are widely used in
the Android ecosystem. Some of these are defined in the Android docu-
mentation5. These kinds of intents are widely sent and received by apps.
As they are declared by many apps, in most cases, the user will be asked to
select the app to handle the intent, making the collusion attack infeasible.
We have identified 208 intent actions matching these characteristics.

3The full list of such intents can be found in our github repository
4https://android.googlesource.com
5http://developer.android.com/reference/android/content/Intent.html

15

https://android.googlesource.com
http://developer.android.com/reference/android/content/Intent.html

6 Experiments

We have used our methodology to look for collusion potential in a set of 50,174
apps provided by Intel Security (McAfee). The goal of this analysis was to shed
the light on the way Android apps communicate and to test if our approach
can deal with high numbers of apps found in the wild. As our approach focuses
on specific, selected communication channels, it might happen that apps not
flagged by our approach could be colluding as they use a channel which our
analysis does not track.

6.1 Dataset Description

The dataset contains 50,174 Android apps collected from February 2012 up to
February 2016. These apps have been categorized by Intel Security into 3 app
categories: malicious, potentially unwanted, and clean. Potentially unwanted
apps are typically related to excessive advertising, mild privacy invasions and
other misbehaviours which cannot be classified as outright malicious. Apps that
are known to lack any malicious behaviour are labelled as clean. Table 4 shows
a summary of the three groups.

Table 4: Summary of app sets used in our analysis.
Malware Unwanted Clean

of apps 13,805 13,991 22,378
of overall installs 3,696,720 7,656,755 21,205,724,533
Avg size in KB 3,007.9 7,394.52 10,208.3

6.2 Usage of Communication Channels

We first checked if there is a difference between the usage of intents and shared
preferences as communication channels. Figure 2 shows the distribution of in-
dividual channels found in each of the analyzed app sets (after filtering out
common intents). Our first observation is that intent based communication
is more predominant in the three analyzed app sets. This is expected result
because intent based communications is the suggested method for inter-app
communication in the Android documentation.

6.2.1 Shared Preferences based Channels

We found a significant difference in the amount of individual channels that use
shared preferences for the malicious and unwanted app sets. Shared Preferences
are not originally intended for application communication. If a developer wants
to make a shared preference file accessible outside of the sandbox, he needs
to explicitly override the default flag value (WORLD_READABLE or WORLD_WRITABLE).
Therefore, it is more likely that the presence of such channels indicates deliberate
information sharing rather than mistakes during app development.

16

Recv Trans Recv Trans Recv Trans
0

10

20

30

40

50

60

70

80

90

100

%

Intents
Shared Preferences

Clean Potentially unwanted Malware

Figure 2: Distribution of unique shared preference and intent based communi-
cation channels. Recv channels are used to receive information. Trans channels
used to transmit information.

We have further analyzed how the most common shared preference channels
are used. Figure 3 shows the number of apps in each set using each of the top
ten identified channels to send or receive information.

Next we manually analyzed samples of the apps employing these commu-
nication channels. We found that apps using shared preferences as channels
fall into three categories. First, there are some apps that dynamically define
the package and preference file they write to or read from (SP4). In this case,
each app uses the preference file for a specific purpose and it is not possible to
extract a behavioural pattern. Second, some apps access preference files that
have the same name as their app package (SP7). These apps also exhibit differ-
ent behaviours so it is not possible to extract a pattern from them. The third
category consists of the rest of the channels, which are the ones that can be
directly mapped to a string value or a call graph. We have found out that all
these channels were related to using specific software libraries.

The most used shared preference channels in Figure 3 were traced back to
five different libraries. Channels SP1, SP5 and SP8 are included inside a SDK
that belongs to the Chinese company Play.cn. While most apps including it are
categorized as malicious or potentially harmful, some of them are considered
clean. These apps should be further analyzed to determine their behaviour.
Channel SP2 is created by the OpenUDID library. This library, which is now
discontinued, was used to generate a unique identifier that could be shared be-
tween different apps. This behaviour puts the user’s privacy at risk: it can
be used by different apps to correlate if they are installed in the same device.

17

(SP1)
App

Pac
ka

ge
 --

CallP
ath

1

(SP2)
"ne

t.o
pe

nu
did

.an
dro

id"
 --

"op
en

ud
id_

pre
fs"

(SP3)
App

Pac
ka

ge
 --

CallP
ath

2

(SP4)
Dina

mica
llyD

efi
ne

d -
- D

ina
mica

llyD
efi

ne
d

(SP5)
App

Pac
ka

ge
 --

".d
se

rv"

(SP6)
Dina

mica
llyD

efi
ne

d -
- "t

ele
metr

y"

(SP7)
App

Pac
ka

ge
 --

App
Pac

ka
ge

(SP8)
App

Pac
ka

ge
 --

".s
ha

re_
list

"

(SP9)
Dina

mica
llyD

efi
ne

d -
- C

allP
ath

3

(SP10
) "c

om
.ex

am
ple

.an
dro

id.
sn

ak
e"

-- "
ad

s"
0

20

40

60

80

100

120

of

 A
pp

s

Receive - Clean
Transmit - Clean
Receive - Potentially Unwanted
Transmit - Potentially Unwanted
Receive - Malware
Transmit - Malware

Figure 3: Apps using any of the top 10 shared preference channels. AppPackage
specifies the application package. CallGraphX describes a call graph that is
being used by different apps.

SP3 and SP9 belong to a library developed by the Chinese company Baidu.
We have been able to identify a colluding behaviour by apps using this SDK,
which is described in detail in Section 7. Channel SP6 belongs to apps in-
cluding the Adobe Air SDK. The preference file is read by a method named
getTelemetrySettings. We did not find any app writing into that file in any of
our three app sets. Finally, channel SP10 belongs to apps including the Heyzap
advertising library. Again, no apps in our three datasets were found writing
data into that file.

6.2.2 Intent based Channels

Figure 4 shows the number of apps that use the most frequent intents in all the
three sets of apps. Analyzing intent communication is more challenging than
shared preferences communications. Depending on the app component (activity,
service or broadcast receiver) used to match an intent, it is not possible to see by
static analysis if it is intended for the same app or a different one. Additionally,
as seen with I3 and I4, we have not detected any receiver that uses intent actions
defined programatically. This is because components that receive intents are
generally defined statically with strings inside the AndroidManifest.xml file.

We have found that intent based communications can also be used to help

18

(I1
) "c

om
.ap

pe
rha

nd
.ac

tio
n.s

ho
w.eu

la"

(I2
) "S

etM
es

sa
ge

Rec
eiv

er"

(I3
) C

allP
ath

1

(I4
) C

allP
ath

2

(I5
) "c

om
.st

art
ap

p.a
nd

roi
d.p

ub
lish

.DISMISS_A
CTIVITY"

(I6
) "c

om
.st

art
ap

p.a
nd

roi
d.p

ub
lish

.DISMISS_O
VERLA

Y"

(I7
) "c

om
.st

art
ap

p.a
nd

roi
d.C

los
eA

dA
ctiv

ity"

(I8
) "m

fpa
d"

(I9
) "a

pp
walla

d"

(I1
0)

"co
m.um

en
g.i

nte
nt.

DOWNLO
AD"

0

500

1000

1500

2000

2500

3000

of

 A
pp

s

Receive - Clean
Transmit - Clean
Receive - Potentially Unwanted
Transmit - Potentially Unwanted
Receive - Malware
Transmit - Malware

Figure 4: Apps using any of the top ten used intent enabled channels. Call-
GraphX describes a call graph that is being used by different apps. Quoted
values are strings.

with app classification. In Figure 4, malicious and unwanted apps use inter-app
communication channels that are not being used by clean apps.

As with the shared preferences, we analyzed the origin of the predominant
communication channels found in our analysis. Most of them belong to libraries
provided by advertisement companies. I1 is included in an aggressive ad library
known as apperhand. I2, I4, I8 and I9 belong to the AirPush advertisement li-
brary. The Sendroid ad library includes the communication channel I3. Finally,
I5, I6 and I7 are included inside the Startapp ad library while I10 appears in
a Chinese library called umeng.

6.3 Collusion Potential

Using Prolog to analyze collusion potential provides a great deal of flexibility,
by simply modifying the Prolog rules to define collusions to look for. We have
focused on analyzing collusion potential of app sets formed by 2 or 3 apps that
may try to extract the accounts, SMS messages or the device contact list. We
have limited the size of app sets to two and three for two reasons. First, it is
unlikely that an attacker has the resources to make the user to install more than
3 apps. Second, larger app sets will be composed of smaller subsets. Finding
them is just a matter of combining smaller colluding app sets. Listing 3 shows

19

Clean Potentially Unwanted Malware
Accounts SMS Contacts Accounts SMS Contacts Accounts SMS Contacts

%
 o

f a
pp

s
in

 s
et

0

10

20

30

40

50

60

70

80

90

100

non colluding
colluding

Figure 5: Percentage of applications that access accounts, SMS and contacts
with and without collusion potential in each of the datasets.

the Prolog rules required to identify apps with collusion potential that may
affect the accounts, SMS messages or the contacts of the device.

coll accounts (AppA,AppB,Path,Length):− uses(AppA,’GET ACCOUNTS’),
comm(AppA,AppB,Length, ,Path), out comm(AppB).

coll contacts (AppA,AppB,Path,Length): uses(AppA,’READ CONTACTS’),
comm(AppA,AppB,Length, ,Path), out comm(AppB).

coll sms(AppA,AppB,Path,Length): uses(AppA,’READ SMS’),
comm(AppA,AppB,Length, ,Path), out comm(AppB).

Listing 3: Selection of collusion potential Prolog rules

Figure 5 shows the percentage of apps inside each set that exhibit collusion
potential for any of the analyzed permission-protected resources (accounts, SMS
and contacts). Results show that at least the 70% of apps in each of the datasets
do not exhibit collusion potential regarding the analyzed resources. This greatly
reduces the number of possible apps to analyze further. Apps inside the mal-
ware group exhibit more collusion potential than apps in the other categories
(with the exception of accounts in the clean dataset). This is because malware
apps generally request more permissions [18] and the inclusion of advertisement
libraries, as we saw in the previous section.

The potentially unwanted app set includes apps with a less collusion poten-
tial. This is a contradictory behaviour. However, when analyzing the amount of
apps that have colluding potential inside each of the groups, we found an expla-
nation. Figures 6 and 7 show the number of apps that can receive each sensitive
protected resource from an app that has been identified to have collusion poten-
tial. Although apps inside the unwanted group have a smaller number of apps
capable of leaking sensitive information, they are able to share them with a
much higher number of apps than apps in the other categories. This is because

20

apps in this group include aggressive advertisement libraries such as the ones
described in the previous section.

Clean Potentially Unwanted Malware

0

200

400

600

800

1000

1200

1400

1600

1800

Accounts

Clean Potentially Unwanted Malware

0

200

400

600

800

1000

1200

1400

1600

1800

SMS

Clean Potentially Unwanted Malware

0

200

400

600

800

1000

1200

1400

1600

1800

Contacts

Figure 6: Number of potentially colluding app pairs obtained for each app
that exhibited collusion potential in each of the sets for each of the analyzed
permission-protected resources.

Apps in the clean set have the smallest number of potentially colluding pairs,
while malware apps have a higher number of potentially colluding app pairs
regarding accounts. This happens because clean apps request account related
permissions more often but communicate with fewer apps, while malware apps
require slightly less access to accounts, but communicate with many more apps.

Clean Potentially Unwanted Malware

×105

0

2

4

6

8

10

12

14

16
Accounts

Clean Potentially Unwanted Malware

×105

0

2

4

6

8

10

12

SMS

Clean Potentially Unwanted Malware

×105

0

2

4

6

8

10

12

14

16
Contacts

Figure 7: Number of the potentially colluding app triplets obtained for each app
that exhibited collusion potential in each of the sets for each of the analyzed
permission-protected resources.

This pattern remains when analyzing the number of potentially colluding
triplets generated by apps with access to the analysed resources. The main
difference is the magnitude on the number of colluding triplets, as the number
of possible combinations increases.

6.4 Time Efficiency

The process required to find app sets with collusion potential is split in two
phases: extracting the ASR signatures and executing the Prolog program. The

21

first phase needs to be executed only once per app, as signatures can be stored
in a database. The second phase is executed every time the fact database is
updated (i.e. when a new app is analyzed). It should be noted that our analysis
is not bidirectional as we identify the direction of the information flow.

0 0.5 1 1.5 2
size of the classes.dex file (in bytes) ×107

0

5

10

15

20

25
Ti

m
e

to
 e

xt
ra

ct
 A

SR
 s

ig
na

tu
re

 fr
om

 a
n

ap
p

(in
 s

ec
) fitted curve: 3.142*10 -7x + 0.01385

Figure 8: Time required to extract ASR signatures from an app, depending on
the size of the classes.dex file.

Figure 8 shows the time required to extract the ASR signatures from an app,
depending on the size of the classes.dex file. All experiments were executed on a
commodity PC with an Intel Core i5 2.7 GHz processor and 8GB DDR3 RAM.
As expected, time grows with the amount of code to be analyzed. Obtained
times fit with a linear function with an R-Square of 76%. For example, a 9.5
Mbyte file requires around 4 seconds of processing. Note that we have not put
an emphasis on optimizing the ASR extraction code.

Figure 9 plots the time required to execute a Prolog query depending on the
number of colluding sets found for each app. Queries for apps that do not exhibit
any colluding behaviour take 30 ms on average. When looking for potentially
colluding app pairs, the maximum query time obtained during our experiments
was 216 ms. The higher times shown in Figure 9 were obtained when looking
for colluding app triplets. Obtained times fit with a polynomial of grade 2 with
a R-square of 71%. Analysis time could be reduced by stopping queries at the
first match. In this way, only apps with one match would be analyzed further.

22

Number of colluding apps found ×105
0 2 4 6 8 10 12 14 16

Ti
m

e
re

qu
ire

d
to

 e
xe

cu
te

 P
ro

lo
g

qu
er

y
(in

 s
ec

)

0

10

20

30

40

50

60
Fitted curve: y = 0.125*x2 + 0.21*x + 0.067

Figure 9: Time required to execute a Prolog query depending on the amount of
potentially colluding app sets the app belongs to.

7 Colluding Behaviour of MoPlus SDK

During our experiments querying for potentially colluding app pairs, we iden-
tified a group of apps that was communicating using both intents and shared
preference files. A manual review of the flagged apps revealed that they were
sharing information through shared preferences files to synchronize the execu-
tion of a potentially harmful payload. This payload was embedded into all the
apps through a library, the MoPlus SDK. This library has been known to be
malicious since November 2015 [19]. However, the collusion behaviour of the
SDK was unknown. In the rest of this section, we briefly describe the malicious
behaviour of the SDK and provide a more detailed analysis of its colluding be-
haviour. To the best of our knowledge, this is the first instance of collusion
found in the wild.

7.1 Malicious Payload

The MoPlus SDK has the ability to open a local HTTP server on the user
device. This enables the attacker to perform a series of malicious operations
including:

• Send arbitrary intents received via the command and control (C&C) server.

• Obtain sensitive information from the users device, including the user
location and the IMEI.

23

• Install apps silently in rooted devices.

• Add contacts received from the C&C server.

The malicious payload embedded inside the MoPlus SDK inherits all per-
missions requested by the app. As these are chosen by the app developer, which
may differ from the SDK developer, it is possible that an app including the
SDK does not have the necessary permissions to execute all the library’s mali-
cious payload. The colluding behaviour of the MoPlus SDK aims to avoid this
problem by identifying which of the apps that include the MoPlus SDK and are
installed in a device have most access to system resources.

7.2 Colluding Behaviour

The detected colluding behaviour differs from the standard colluding behaviour
studied in most app collusion research [9, 15]. In a nutshell, all apps including
the MoPlus SDK that are running on a device will talk to each other to check
which of the apps has the most privileges. This app will then be chosen to
execute the local HTTP server able to receive commands from the C&C server,
maximizing the effects of the malicious payload.

The MoPlus SDK includes the MoPlusService and the MoPlusReceiver com-
ponents. In all analyzed apps, the service is exported. In Android, this is
considered to be a dangerous practice, as also other apps will be able to call
and access this service. However, in this case it is a feature used by the SDK to
enable communication between its apps.

The colluding behaviour is executed when the MoPlusService is created
(onCreate method). This behaviour is triggered by the MoPlus SDK of each
app and can be divided in two phases: establishing app priority and exe-
cuting the malicious payload. In the next sections, we will describe this be-
haviour in detail with reconstructed code samples. These have been obtained
by reconstructing part of the code from the Baidu Searchbox app with MD5
062f91b3b1c900e2bc710166e6510654 signature. Locations of different payloads
may differ from app to app, as code is generally obfuscated by using Proguard.

7.2.1 Establishing app priority

During SDK initialization, the MoPlusService is created inside each app with
the MoPlus SDK. The service executes three checks (Listing 4):

1. The version of the MoPlus SDK is checked against a value stored in a
preference file (lines 3 to 5).

2. The SDK looks for the tag DisableService inside the AndroidManifest
(!a(Context), line 8). If it is found, it will not continue to execute.

3. The SDK checks if the app executing the SDK has all the necessary
components of the SDK and the minimum permissions required by the

24

SDK have been granted (j(Context), line 8). The minimum permis-
sions required to continue execution are: INTERNET, READ_PHONE_STATE,
ACCESS_NETWORK_STATE, BROADCAST_STICKY, WRITE_SETTINGS, WRITE_EXTERNAL_STORAGE,
SET_ACTIVITY_WATCHER, GET_TASKS.

1 SharedPreferences localSharedPreferences = paramContext.getSharedPreferences(”pst”, 0);
2 int i = c(paramContext, paramContext.getPackageName());
3 int j = localSharedPreferences.getInt(”pr v”, 0);
4 SharedPreferences.Editor localEditor1;
5 if ((j < i) || (paramBoolean)){
6 Log.d(”Utility”, ”oldVCode=” + j + ” vcode=” + i + ” isForce ” + paramBoolean);
7 localEditor1 = paramContext.getSharedPreferences(paramContext.getPackageName() +

”.push sync”, 1).edit();
8 if ((! a(paramContext)) && (j(paramContext)))
9 break label197;

10 localEditor1 .putLong(”priority”, 0L);
11 }

Listing 4: Code used to check for execution conditions. This code is included
in the class com.baidu.android.moplus.util.a.

If any of these checks fail, the service assigns itself a zero priority inside a
preference file readable by the rest of the apps installed in the system (line 11).
The name of the preference file is created adding the extension .push_sync to
the app package name. The SDK uses the WORLD_READABLE flag to save the file
so other apps can access it.

If the three checks hold, the service executes the method f(Context). This
method computes a priority to the app that depends on several factors (Listing
5).

1 public static long f(Context paramContext){
2 long l1 = 0L;
3 if (paramContext == null)
4 return l1 ;
5 if (!g(paramContext, paramContext.getPackageName()))
6 l1 += 1L;
7 long l2 = l1 << 1;
8 if (! i (paramContext))
9 l2 += 1L;

10 long l3 = l2 << 1;
11 if (! f(paramContext, paramContext.getPackageName()))
12 l3 += 1L;
13 long l4 = l3 << 1;
14 if (d(paramContext, paramContext.getPackageName()))
15 l4 += 1L;
16 long l5 = l4 << 1;
17 if (p(paramContext))
18 l5 += 1L;
19 long l6 = l5 << 1;
20 if (b(paramContext, paramContext.getPackageName()))
21 l6 += 1L;
22 return 0x79000000000000 | (l6 | 0xFF & i(paramContext, ”moplus addon priority”) << 40);
23 }

Listing 5: Code used by MoPlus SDK to assign priority execution to each app
MoPlusService. This code is included in the class com.baidu.android.moplus.util.a.

These include, from lowest to highest priority:

25

com.baidu.searchbox

MoPlus
SDK

Priority	=	100L

com.baidu.searchbox.push_sync

Save priority value1

com.baidu.BaiduMap

MoPlus
SDK

Priority	=	10L

com.baidu.BaiduMap.push_sync

Save priority value1

com.myapp

MoPlus
SDK

Priority	=	0L

com.myapp.push_sync

Save priority value1

App Sandbox App Sandbox App Sandbox

Figure 10: Phase 1 of the colluding behaviour execution. Each app saves a pri-
ority value that depends on the amount of access it has to the system resources.
Priority values are shown for the sake of explanation.

1. Several meta-data values from the manifest (lines 3 to 15): DisableLocalServer,
DisableStatistic, DisableApplist, isBaiduApp.

2. Access to the contact lists (lines 17 and 18).

3. If the app is part of the system image (l. 20 and 21).

4. A priority value included in the manifest (line 22).

The obtained priority is saved in the preference file with push_sync extension.
This behaviour is executed by all apps including the MoPlus SDK (Figure 10).

7.2.2 Executing the malicious payload

After the priority has been obtained and stored, the service method OnCreate()

calls the method a(Context,long) (Listing 6) to create and broadcast a new
intent object.

1 public static void a(Context paramContext, long paramLong){
2 Context localContext = paramContext.getApplicationContext();
3 Intent localIntent = c(localContext);
4 localIntent .setPackage(d(localContext));
5 a(localContext, localIntent , paramLong);
6 }

Listing 6: Creation of a new intent object. The method a is used to broadcast
it. This code is included in the class com.baidu.android.moplus.util.a.

The localIntent value is obtained from the execution of the method c(Context)

(line 3). This method creates the intent that will start the MoPlusReceiver (List-
ing 7).

1 public static Intent c(Context paramContext){
2 Intent localIntent = new Intent(”com.baidu.android.moplus.action.START”);
3 localIntent .addFlags(32);
4 localIntent .putExtra(”method version”, ”V1”);
5 return localIntent ;
6 }

26

Listing 7: Creation of a new intent object. The method a is used to broadcast
it. This code is included in the class com.baidu.android.moplus.util.a.

The call to d(Context) (line 4) looks for the app package with highest priority
through the method a(Context,String,String) (Listing 8).

1 public static String d(Context paramContext){
2 return a(paramContext, ”.push sync”, ”priority”);
3 }

Listing 8: Method that returns the app package with highest priority. This code
is included in the class com.baidu.android.moplus.util.a.

The method a(Context,String,String)looks for all the packages that are
able to answer the Intents included in the MoPlus SDK (Listing 9, lines 3 to 6):
com.baidu.android.moplus.action.START and com.baidu.android.pushservice.action.BIND_SYNC.

1 public static String a(Context paramContext, String paramString1, String paramString2){
2 List localList = h(paramContext);
3 if ((localList == null) || (localList . size () <= 1)){
4 localObject1 = paramContext.getPackageName();
5 return localObject1;
6 }
7 long l1 = paramContext.getSharedPreferences(paramContext.getPackageName() +

”.push sync”, 1).getLong(”priority”, 0L);
8 String str = paramContext.getPackageName();
9 Iterator localIterator = localList . iterator () ;

10 while (localIterator .hasNext()){
11 localObject2 = ((ResolveInfo) localIterator .next()) . activityInfo .packageName;
12 SharedPreferences localSharedPreferences2 =

paramContext.createPackageContext((String)localObject2,
2).getSharedPreferences((String)localObject2 + paramString1, 1);

13 ...
14 }
15 }

Listing 9: Method that inspects all shared preference files of packages
that answer the MoPlus SDK actions. This code is included in the class
com.baidu.android.moplus.util.a.

For each package found, it inspects the contents of the push_sync file to get
its priority, returning the package name of the one with highest priority (Figure
9, line 10 to end). The intent to be launched is configured so only receivers
in the returned package can receive it (Listing 6, line 4). Finally, the method
a(Context, Intent, long) (Listing 10) cancels previous intents being registered
(to avoid launching the service more than once) and sends the intent after a
delay passed as a parameter.

1 public static void a(Context paramContext, Intent paramIntent, long paramLong){
2 PendingIntent localPendingIntent = PendingIntent.getBroadcast(paramContext, 0,

paramIntent, 268435456);
3 AlarmManager localAlarmManager =

(AlarmManager)paramContext.getSystemService(”alarm”);
4 localAlarmManager.cancel(localPendingIntent);
5 localAlarmManager.set(3, paramLong + SystemClock.elapsedRealtime(),

localPendingIntent);

27

6 }

Listing 10: Method that cancels previous intents matching the service, and
registers a new intent to be launched.

The described behaviour is executed by all apps that include the MoPlus
SDK libraries (Figure 11).

com.baidu.searchbox

MoPlus
SDK

Priority	=	100L

com.baidu.searchbox.push_sync

com.baidu.BaiduMap

MoPlus
SDK

Priority	=	10L

com.baidu.BaiduMap.push_sync

com.myapp

MoPlus
SDK

Priority	=	0L

com.myapp.push_sync

Read priority values1

App Sandbox App Sandbox App Sandbox

Launch
Intent

2

Figure 11: Phase 2 of the colluding behaviour execution. Each app checks
the WORLD_READABLE SharedPreference files and sends and intent to the app with
highest priority

8 Related Work

Countermeasures for fighting collusion attacks can be grouped into two cate-
gories: static analysis and Android OS extensions. ComDroid [20] is a static
analysis tool that looks for confused deputies through Intents. Kdroid [21] de-
tects collusion via software model-checking a set of Android apps utilising the
K framework. PermissionFlow uses taint analysis to automatically detect inter-
application permission leaks [22]. In their work they found that more than 50%
of the top 313 apps (in 2012) actively used inter-component information flows
and four of them leaked permissions to other apps. Our work differs from Per-
missionFlow in our lack of taint analysis and our consideration of channels that
may be used specifically for collusion (e.g. shared preferences). Taint analysis
allows PermissionFlow to be more precise, but at the same time more computa-
tionally costly. Our system could be used to filter out app sets without colluding
potentially, focusing the more computationally complex analysis on those that
exhibit collusion potential.

In contrast to these, XManDroid [10], TrustDroid [23] and [24] extend the
Android OS by providing finer control over app communications. These exten-
sions identify possible communication paths between apps and allow to define
policies that control how they exchange information. These are similar to the
ones provided by the Intent Firewall included as a component, not enabled, of
recent Android versions [25]. TrustDroid provides additional controls to moni-
tor the file system and network connections. However, none of them provide a
monitoring system for shared preference files and other covert channels. As we

28

have found during our research, these communication channels are also a viable
means of communication between colluding apps.

Bartel et al. [26] propose the tool APKCombiner which joins two apps into a
single APK file. In this way, a security analyst can use IPC analyzers to analyze
the IAC mechanisms. Their evaluation over a set of 3000 apps shows that the
approach is valid, as it is capable of joining together 88% of the possible app
pairs. The average time required to join two apps is three minutes. This makes
it hard to use for practical large-scale app analysis.

9 Conclusions

Detecting app collusion on a large scale is a challenging task due to the sheer
amount of possible app combinations and communication channels. We have
presented a method to analyze large sets of apps to look for collusion potential.
Our method is based on a lightweight analysis of apps that extracts ASR sig-
natures. These are transformed into Prolog facts, so logic programming can be
used to identify collusion potential between apps in an efficient way.

We have validated our approach against an artificial set of apps and tested
it against a large dataset of ’in the wild’ apps. Our results show that malicious
apps use inter-app communications in a different way than clean ones. Malware
classification methods could take advantage of this fact to increase their accuracy
and to detect collusion.

A manual analysis of some of the apps flagged by our detection system al-
lowed us to identify the first known case of collusion in the wild. This discovery
demonstrated the risk of using untrusted or maliciously modified SDKs. The
designers of these app communication scheme even considered the possibility of
the SDK being included as part of a system image. Identified colluding apps
synchronize with each other (by sharing a priority value) activating only the
service within the more privileged app. This finding demonstrates the need to
focus on alternative methods of communication when looking for colluding apps.
Although intent based communications are more common, other means of com-
munication (such as the shared preferences and covert channels) should also be
considered. Our future direction of work aims to explore these communication
channels and to use formal verification methods to automatically analyze apps
flagged by our system.

Acknowledgment

This work has been supported by UK Engineering and Physical Sciences Re-
search Council (EPSRC) grant EP/L022699/1.

29

References

[1] I. Lunden, “6.1B Smartphone Users Globally By 2020, Overtaking Ba-
sic Fixed Phone Subscriptions,” http://techcrunch.com/2015/06/02/6-
1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-
subscriptions/#.pkatr9:RPIH, accessed: 10-11-2015.

[2] R. Lipovsky, “Eset analyzes first android file-encrypting, tor-enabled ran-
somware,” http://www.welivesecurity.com/2014/06/04/simplocker/, 2014.

[3] E. K. o, “Malware abuses android accessibility feature to steal data,”
http://www.securityweek.com/malware-abuses-android-accessibility-
feature-steal-data, 2015.

[4] C. Page, “Mkero: Android malware secretly subscribes victims to premium
sms services,” http://www.theinquirer.net/inquirer/news/2425201/mkero-
android-malware-secretly-subscribes-victims-to-premium-sms-services,
2015.

[5] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android
permissions: User attention, comprehension, and behavior,” in Proceedings
of the Eighth Symposium on Usable Privacy and Security. ACM, 2012,
p. 3.

[6] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android security,”
IEEE security & privacy, no. 1, pp. 50–57, 2009.

[7] A. Shabtai, Y. Fledel, and Y. Elovici, “Securing android-powered mobile
devices using selinux,” IEEE Security & Privacy, no. 3, pp. 36–44, 2009.

[8] S. Mutti, E. Bacis, and S. Paraboschi, “An selinux-based intent manager
for android,” in Communications and Network Security (CNS), 2015 IEEE
Conference on. IEEE, 2015, pp. 747–748.

[9] R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala, A. Kapadia, and X. Wang,
“Soundcomber: A stealthy and context-aware sound trojan for smart-
phones.” in NDSS, vol. 11, 2011, pp. 17–33.

[10] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi, “Xman-
droid: A new android evolution to mitigate privilege escalation attacks,”
Technische Universität Darmstadt, Technical Report TR-2011-04, 2011.

[11] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda, “Evo-
lution, detection and analysis of malware for smart devices,” IEEE Com-
munications Surveys Tutorials, vol. 16, no. 2, pp. 961–987, Second 2014.

[12] M. La Polla, F. Martinelli, and D. Sgandurra, “A survey on security for mo-
bile devices,” Communications Surveys & Tutorials, IEEE, vol. 15, no. 1,
pp. 446–471, 2013.

30

http://techcrunch.com/2015/06/02/6-1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-subscriptions/#.pkatr9:RPIH
http://techcrunch.com/2015/06/02/6-1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-subscriptions/#.pkatr9:RPIH
http://techcrunch.com/2015/06/02/6-1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-subscriptions/#.pkatr9:RPIH
http://www.welivesecurity.com/2014/06/04/simplocker/
http://www.securityweek.com/malware-abuses-android-accessibility-feature-steal-data
http://www.securityweek.com/malware-abuses-android-accessibility-feature-steal-data
http://www.theinquirer.net/inquirer/news/2425201/mkero-android-malware-secretly-subscribes-victims-to-premium-sms-services
http://www.theinquirer.net/inquirer/news/2425201/mkero-android-malware-secretly-subscribes-victims-to-premium-sms-services

[13] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permis-
sion re-delegation: Attacks and defenses,” in USENIX Security Symposium,
2011.

[14] Z. Fang, W. Han, and Y. Li, “Permission based android security: Issues
and countermeasures,” computers & security, vol. 43, pp. 205–218, 2014.

[15] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun, “Analysis of the
communication between colluding applications on modern smartphones,”
in Proceedings of the 28th Annual Computer Security Applications Confer-
ence. ACM, 2012, pp. 51–60.

[16] A. Desnos, “Androguard,” https://github.com/androguard/androguard,
2015, accessed: 15-10-2015.

[17] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing the an-
droid permission specification,” in Proceedings of the 2012 ACM conference
on Computer and communications security. ACM, 2012, pp. 217–228.

[18] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Security and Privacy (SP), 2012 IEEE Symposium on.
IEEE, 2012, pp. 95–109.

[19] S. Shen, “Setting the record straight on moplus sdk and the
wormhole vulnerability,” http://blog.trendmicro.com/trendlabs-
security-intelligence/setting-the-record-straight-on-moplus-sdk-and-
the-wormhole-vulnerability/, accessed: 04/0/2016.

[20] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in android,” in Proceedings of the 9th interna-
tional conference on Mobile systems, applications, and services. ACM,
2011, pp. 239–252.

[21] I. M. Asavoae, H. N. Nguyen, M. Roggenbach, and S. Shaikh, “Utilising K
semantics for collusion detection in android applications,” in FMICS/AV-
oCS’16. Springer, 2016.

[22] D. Sb̂ırlea, M. G. Burke, S. Guarnieri, M. Pistoia, and V. Sarkar, “Au-
tomatic detection of inter-application permission leaks in android applica-
tions,” IBM Journal of Research and Development, vol. 57, no. 6, pp. 10–1,
2013.

[23] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and B. Shastry,
“Practical and lightweight domain isolation on android,” in Proceedings of
the 1st ACM workshop on Security and privacy in smartphones and mobile
devices. ACM, 2011, pp. 51–62.

[24] Y. Jing, G.-J. Ahn, A. Doupé, and J. H. Yi, “Checking intent-based com-
munication in android with intent space analysis,” in Proceedings of The
11th ACM Asia Conference on Computer and Communications Security
(ASIACCS), 2016.

31

https://github.com/androguard/androguard
http://blog.trendmicro.com/trendlabs-security-intelligence/setting-the-record-straight-on-moplus-sdk-and-the-wormhole-vulnerability/
http://blog.trendmicro.com/trendlabs-security-intelligence/setting-the-record-straight-on-moplus-sdk-and-the-wormhole-vulnerability/
http://blog.trendmicro.com/trendlabs-security-intelligence/setting-the-record-straight-on-moplus-sdk-and-the-wormhole-vulnerability/

[25] C. Yagemann, “Intent firewall,” Web, July 2016.

[26] L. Li, A. Bartel, T. Bissyand, J. Klein, and Y. Traon, “Apkcombiner:
Combining multiple android apps to support inter-app analysis,” in ICT
Systems Security and Privacy Protection, ser. IFIP Advances in Information
and Communication Technology, H. Federrath and D. Gollmann, Eds.
Springer International Publishing, 2015, vol. 455, pp. 513–527. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-18467-8 34

32

http://dx.doi.org/10.1007/978-3-319-18467-8_34

	1 Introduction
	1.1 Contributions

	2 The Android Operating System
	2.1 App Components
	2.2 Communications

	3 App Collusion
	3.1 Definition of Collusion Potential
	3.2 Communication Channels for App Collusion

	4 Detecting Collusion Potential
	4.1 Extracting ASR Signatures
	4.2 Characterizing Collusion Potential with Logic Rules
	4.3 ACiD Rule Set in Prolog
	4.4 Validation
	4.5 Validation Run

	5 Scaling up
	5.1 Collusion Potential and Computational Complexity
	5.2 Managing Complexity

	6 Experiments
	6.1 Dataset Description
	6.2 Usage of Communication Channels
	6.2.1 Shared Preferences based Channels
	6.2.2 Intent based Channels

	6.3 Collusion Potential
	6.4 Time Efficiency

	7 Colluding Behaviour of MoPlus SDK
	7.1 Malicious Payload
	7.2 Colluding Behaviour
	7.2.1 Establishing app priority
	7.2.2 Executing the malicious payload

	8 Related Work
	9 Conclusions

