
A Multi–agent Scanner to Detect Stored–XSS Vulnerabilities

E. Galán, A. Alcaide, A. Orfila, J. Blasco
University Carlos III of Madrid, UC3M

Leganés, Spain
{edgalan,aalcaide,adiaz,jbalis}@inf.uc3m.es

Abstract

The cross-site scripting (XSS) has become a common
vulnerability of many web sites and web applications. XSS
consists in the exploitation of input validation flaws, with
the purpose of injecting arbitrary script code which is later
executed at the web browser of the victim. One interesting
possibility to prevent this type of vulnerability is the use of
vulnerability scanners. However, current scanners are ca-
pable of detecting just one of the two main modalities of XSS
attacks. This paper introduces a novel multi–agent system
for the automated scanning of web sites to detect the pres-
ence of XSS vulnerabilities exploitable by anstored–XSS
attack. The rate of detection of the system is evaluated in
two different scenarios.

1 Introduction

The web applications provide users with a wide range
of services, usually exhibiting high degrees of usability.
Since people are frequently asked to enter private informa-
tion into those applications to perform sensitive operations
online (such as bank transactions), web applications have
become a desirable target for cyber–criminals. In this re-
gard, cross-site scripting (XSS) attacks on web applications
have experienced an important rise in recent years [14, 13].

XSS exploits flaws in web applications which allow an
attacker to execute arbitrary code without the authorization
of the web application. This way, an unaware user can
be the victim of an identity theft, electronic fraud or other
modalities of cyber–crime.

XSS attacks occur in three main well differentiated
ways: reflected–XSS, stored–XSS and DOM–based XSS.
These modalities differ from each other in the way they
manage to inject the intrusive code into the application and
in the way this code is executed. The majority of authors do
not include DOM–based XSS attacks when they enumerate
the different XSS attack types [8]. The reason of that ex-
clusion is not only the lower number of occurrences of that

Figure 1. Reflected–XSS attack

specifictype of attack but also the different nature of the at-
tack itself: while reflected and stored XSS attacks are due to
vulnerable web applications, DOM–based attacks are moti-
vated by vulnerabilities of the interpreter of the script used
by the web browser.

Reflected and stored XSS attacks exploit vulnerabilities
which are found on web applications. These attacks inject
the script code through an HTTP request, usually as a pa-
rameter or input of a web form. In reflected attacks, the
injected script is immediately executed in the browser of
the victim as the script is included in the response to the
HTTP request. By contrast, stored–XSS attacks work in a
different way: their goal is to inject the script in a persistent
way. This way, an attacker has to exploit a vulnerability just
once and the injected script would execute as many times
as the web page containing the script is visited. Figures 1
and 2 show the diagrams of examples of reflected–XSS and
stored–XSS attacks respectively.

Among the multiple possibilities for mitigating the im-
pact of XSS attacks, vulnerability scanners have proven to
be valid tools for that task. However, their range of coverage
is limited as these tools just take into account reflected–XSS
attacks. It is the purpose of this paper to expand the cover-
age of vulnerability scanners to include stored–XSS attacks
too. This way, vulnerability scanners can become a com-
plete and integral solution to reduce the presence of XSS
vulnerabilities on web applications.

Copyright © 2010 ICITST-2010 Technical Co-Sponsored by IEEE UK/RI Communications Chapter 332



Figure 2. Stored–XSS attack

2 Literature Review

XSS is a security threat which has been addressed by re-
searchers throughout a variety of approaches. Existing pro-
posals range from design methodologies, applicable by web
developers, in order to prevent XSS attacks, to detection
tools that identify XSS vulnerabilities on operating web-
sites.

Though the ideal solution would be the use of design
methodologies that take into account the security aspects
of a web application [11], those aspects are very frequently
overlooked. This implies that a high number of XSS vul-
nerabilities are not detected during the development phase
and can be exploited later on by potential attackers.

To overcome this problem, different tools are usually de-
ployed in a cumulative way over several security layers.
Some authors have proposed the use of static analysis tech-
niques to discover input validation flaws in a web applica-
tion, however, this approach requires access to the source
code of the application [16, 5]. Moreover, those static anal-
ysis schemas are usually complemented by the use of dy-
namic analysis techniques [3, 15, 2]. The dynamic analysis
is used to confirm potential vulnerabilities detected during
the static analysis by watching the behavior of the applica-
tion at runtime.

Several existing systems have been adapted to detect
XSS. Application level firewalls [7], reversal proxies [17]
and IDS (Intrusion detection systems) ([10, 4]), have been
adapted to try to mitigate the XSS problem. Firewalls focus
on tracking sensitive information and controlling whenever
data is to be sent to untrusted domains. Reverse proxies
receive all responses from the web application and check
whether there are any unauthorized scripts on them. IDS ap-
proaches deal with the identification of traffic patterns that
allow the detection of known XSS attacks.

The use of vulnerability scanners [6, 1] facilitates, to a
great extent, the automated search of XSS vulnerabilities in

web applications. They evaluate the application by launch-
ing a collection of attacks against the application and verify-
ing if they were or not successful. That verification process
simply consists in checking if the injected script is present
in the response obtained from the application, so this ap-
proach is only capable of detecting vulnerabilities that can
be exploited through reflected–XSS attacks but not stored–
XSS attacks.

It is the goal of this work to complete the scope of vul-
nerability scanners by allowing them to check the presence
of stored–XSS vulnerabilities in web applications.

The system we proposed is based on a multi–agent ar-
chitecture with the following main characteristics:

1. The multi–agent architecture allows the different
agents to be able to operate independently, so the sys-
tem is more efficient than those based on a single op-
erator.

2. The vulnerability scanner does not need to have access
to the source code of the scanned application.

3. The architecture is highly flexible and adaptable for the
scanning of any web application.

4. The proposed system can be used by developers and
web managers to enhance web security.

5. It can be used by external entities in web security au-
ditory processes.

6. Acting in coordination with other existing reflected–
XSS vulnerability scanners it offers a complete cover-
age against XSS attacks.

The remainder of this paper is organised as follows. Sec-
tion II explains our multi-agent proposed system. Section
III shows the evaluation methodology applied and the re-
sults obtained. Section IV gathers our conclusions and fi-
nally, Section V enumerates our future work directions.

3 Multi–agent architecture

Present work focuses on the extension of current XSS
vulnerability scanners with the purpose of making them
able of scanning applications looking for stored–XSS vul-
nerabilities. As current vulnerability scanners are only ca-
pable of detecting reflected–XSS vulnerabilities, the capa-
bility of identifying all types of XSS flaws would consti-
tute an important step towards turning this kind of scanners
into an efficient and integral tool for preventing XSS. Regu-
lar XSS vulnerability scanners (see Figure 4 for a graphical
representation) work in the following way :

Copyright © 2010 ICITST-2010 Technical Co-Sponsored by IEEE UK/RI Communications Chapter 333



Figure 3. Reflected–XSS vulnerability scan-
ner

1. A selection of attack vectors are obtained from an at-
tack vector repository1.

2. Selected attack vectors are launched against inputs of
the web application. Those attack vectors are generally
injected in a HTTP request as parameters or as fields
in a web form.

3. The vulnerability scanner receives the responses to the
requests which contained the injected code.

4. The vulnerability scanner checks for the presence of
injected script in the received responses. If affirmative,
XSS attack is considered successful and a vulnerability
of the scanned web application has been discovered.

Note that scanning an application looking for reflected–
XSS vulnerabilities is a trivial task, as looking for the in-
jected script in the immediate response can be carried out in
a straightforward way. By contrast, to scan for stored–XSS
flaws is a more complex task. This fact is due to the greater
difficulty of verifying whether the script was successfully
injected or it was detected and properly processed by the
web application. As the injected script is not immediately
returned to the web browser but stored among the legitimate
content of the web application, a tool that scans for stored–
XSS vulnerabilities must be able to locate the injected script
among the rest of content. To sum up, our system must ac-
complish the following objectives:

• Finding the input points of the application susceptible
of being vulnerable to a stored–XSS attack.

• Injecting selected attack vectors at the previously de-
tected points.

1XSS attack vectors are commonly stored in repositories and include
the description of the attack as well as the script code to be injected.

• Crawl through the web application looking for the in-
jected scripts in order to verify the success of the at-
tack.

Our novel multi–agent architecture allows for each one of
those tasks to be carried out by a different type of agent.
This design decision has been taken to allow each of the
stages of the scanning process to be performed concurrently
with the other stages. It also allows for the different sub-
tasks of the scanning process to take place in a distributed
and/or parallel way. The set of agents part of the proposed
architecture and the operation of the scanner are listed be-
low (also see Figure 4):

1. A webpage parser agentcrawls the web application.

2. Information about the different web forms found in the
previous step is used to build a repository of potential
injection points (Injection point repository).

3. A script injector agent reads the list of injection
points identified by the parser agent.

4. The script injector agent also makes a selection of vec-
tors attacks from theAttack vector repository.

5. The desired set of attack vectors is launched against
each of the potential points of attack of the application.

6. A list of the performed attacks is stored in aPerformed
attack list.

7. Theverificator agent gets the list of the attacks to be
verified.

8. The verificator agent crawls the web application look-
ing for each of the attacks.

9. A report about the results of the scanning process is
elaborated and stored.

A more detailed description of each agent is given in the
following sections.

3.1 Web Page Parser Agent

It is an agent that explores the web site in order to
find the injection points where stored–XSS attacks could
be launched. This parsing process is similar to that of web
crawlers and spiders [9], as it systematically retrieves infor-
mation from the pages it visits and it propagates through the
site following the hyper-links it finds. Nevertheless, it dif-
fers from the typical web crawler in two aspects: (1) It just
follows the hyper-links with destination to the scanned site
discarding all external links and, (2) The information re-
covered are web forms. Web forms have been chosen as the
point of entry for stored–XSS attacks due to the fact that

Copyright © 2010 ICITST-2010 Technical Co-Sponsored by IEEE UK/RI Communications Chapter 334



Figure 4. Multi-agent architecture of a scanner to detect stored–XS S vulnerabilities

Attribute Description
Name The attributenameof the HTML form.
Action Theactionfield indicates the destination of the form data.

The method of the HTTP request originated
Method when the form is submitted.

Control The type of control of the field: input, textarea...
Type Specific type of the control: password field,

submit button, text field, radio button...
Name Thenameattribute of the field
Value The value of the field.

Table 1. Injection point repository entry

they arethe main mechanism offered by web applications
to add new content that is persistently stored. Additionally,
web forms that sends their data to a different website are
not taken into account either. Links with parameters are not
stored as entry points as they are usually used to query the
database used by the web application, and not to insert new
information, (they can be used to launch reflected–XSS at-
tacks, but not stored–XSS attacks).

The output of this agent is a collection of forms which
are likely to be vulnerable and potential targets for stored–
XSS attacks. As previously stated, such information is used
to build an Injection point repository. Table 1 illustrates an
entry in that repository.

3.2 Script Injector Agent

This agent makes use of the collection of web forms
elaborated by the web page parser agent and registered in
the Injection point repository. The agent will inject a col-
lection of XSS attack vectors from a well-known repository
[12] into the different input fields of each of the injection

points.
The set of attacks used for the evaluation of our tool were

extracted from a repository of XSS attack vectors in [12].
Those vectors make use of different ways of inserting arbi-
trary script code trying to be unnoticed by the web applica-
tion and, in our case, to be incorporated as legitimate con-
tent in the web application. Attack vectors in the repository
are widely varied and they are classified as follows:

• Basic XSS vectors: direct injection of the malicious
script.

• HTML Element vectors: malicious script is injected
along with regular HTML elements.

• Character Encoding vectors: different ways of repre-
senting text are used to get the script injected.

• Embedded Character vectors: consists in the insertion
of deliberately incorrect characters among the script
content with the purpose of making the script unno-
ticeable by the web application but executable by the
web browser.

• Event Handlers vectors: they try to inject the scripts
as JavaScript event handlers such asonClick, onLoad,
etc.

• XSS with HTML Quote Encapsulation: they actively
try to evade input validation filters, specially the ones
consisting of regular expressions.

• URL Obfuscation vectors: they focus on modifying an
URL in order to make it unrecognizable by the input
validation filters of the web application.

Copyright © 2010 ICITST-2010 Technical Co-Sponsored by IEEE UK/RI Communications Chapter 335



Attribute Description
Name Identifies the attack vector.
Code The malicious code which will be injected.
Description A brief explanation on what the attack consists in.
Label The category in which the attack vector is contained.
Browser The specific version of web browsers where

the injected script can be executed.

Table 2. Attack vector repository entry

Attribute Description
Page URL where the script code was found.
Code Script code found corresponding

with one of the launched attacks.

Table 3. Attack vector attributes

• Other attacks: singular attack vectors which are not
classifiable in any of the previous categories.

Each of the attacks contained in the Attack vector repos-
itory is characterized by a series of attributes described on
Table 2.

The script injector agent registers the different attacks it
launches into thePerformed attack list.

3.3 Verificator Agent

The third and last agent of the proposed system takes
as input the list of performed attacks, which was produced
by the script injector agent, and looks for those attacks in
the analyzed web application. It is necessary to search for
the injected scripts because, in opposition to reflected–XSS
attacks, the success of stored–XSS attacks can not be veri-
fied immediately in the response to the HTTP request which
contained the malicious script code.

After this second crawling of the web site it is possible
to determine if the web application shows any of the stored–
XSS vulnerabilities identified during the scanning process.

The results obtained are very useful in the process of se-
curing the application by correcting the input validation er-
rors which led to the success of the attacks. The results of
the scan are structured as it is shown in Table 3.

4 Evaluation

An implementation of the proposed system was devel-
oped with the purpose of testing and evaluating the scan-
ner against different web sites. The implementation of our
multi-agent system allows the three different agents to oper-
ate separately. However, a sequential execution is motivated
by the strong dependency between the agents as the input of
an agent is the output generated by the previous one. This
way, the first agent to be launched would be the Webpage
parser agent. Next agent is the Script injector agent, which
uses as input the attack point repository generated by the
previous agent. Finally, the Verificator agent which cannot

Launched Detected Detection
Attack type attacks attacks rate

Basic XSS
Attacks 5 2 40%
HTML Element
Attacks 47 12 25.53%
Character Encoding
Attacks 13 6 46.15%
Embedded Character
Attacks 17 6 35.3%
Event Handlers 0 0 0%
XSS with HTML
Quote Encapsulation 7 4 57.14%
URL Obfuscation 14 12 85.71%
Other Attacks 7 2 28.57%
Average detection rate: 39.8%

Table 4. Vulnerable web site results

be executed until the list of launched attacks is generated by
the injector agent.

Our experimental work focused on two different scenar-
ios. The first series of experiments carried out were against
an unsecured application. The scanned web application is a
highly-simplified web for a social network. Users can post
text entries and those entries can be commented by other
users as well as by themselves. The web application has
been implemented in the Java language on an Apache Tom-
cat servlet container. The application data is stored in a
MySQL database. The application does not perform any
validation on the received input so a high number of XSS
vulnerabilities are expected.

The use of this first experimental framework served to
test and evaluate the usability of each of the agents, to inte-
grate the different parts of the architecture and to measure
the effectiveness of the whole system.

The second series of experimental work was against a
web application which had been developed by a freely dis-
tributed content management tool such as Drupal. Drupal
is a popular content management system which allows the
easy creation and management of web sites. This experi-
mental setting allowed us to validate the tool against real
scenarios.

The results obtained differ greatly on each of the used
scenarios. In the first case many attacks were detected by
our scanner (Table 4) reaching an average detection rate of
39.8%. Unsuccessful attacks were due to two main reasons:
(1) The attack vector repository, though it is a comprehen-
sive and wide collection of attack vectors, is more focused
on showing the different possibilities of XSS attacks rather
than providing ready–to–use attack vectors and, (2) Many
of the launched attacks were thwarted by the input valida-
tion mechanisms of MySQL.

By contrast, the evaluation of the Drupal–based web site
did not show any successful attacks. This was an expected
result, as the evaluated web application was framed within
a consolidated and widely-tested software.

Copyright © 2010 ICITST-2010 Technical Co-Sponsored by IEEE UK/RI Communications Chapter 336



5 Conclusions

Vulnerability scanners are a promising mechanism to
fight the presence of XSS vulnerabilities in web applica-
tions. Current proposals allow to automatically look for that
kind of security holes, although they also present an impor-
tant limitation: they cannot detect stored–XSS attacks.

Finally, an implementation of the scanning system was
tested against two different scenarios. The result attained in
both series of experiments served to guarantee the correct-
ness and efficiency of the proposed scheme.

6 Future Work

The proposed system constitutes a complete working ar-
chitecture, however, some aspects can be modified in order
to improve the scanning process by getting a better perfor-
mance and accuracy.

The selection of the points of the webpage where input
data is incorporated to the content of the web application
can be optimized by the use of certain rules and heuristics
which would represent an important performance boost as
code injection would be performed at input points where a
stored–XSS attack is more likely to be successful.

The repository [12] used for evaluating this tool con-
tains a representative collection of attack vectors which il-
lustrates the different possibilities of XSS attacks. How-
ever, that implies that its attacks are simple enough to be
detected by basic validation input mechanisms and are not
well-suited for circumventing additional input filters such as
the validation performed by the database engine. Defining
a more effective collection of attack vectors would imply
greater possibilities of obtaining better results (more vul-
nerabilities identified) from a scanning process.

7 Acknowledgement

This work has been partially supported by CDTI (Minis-
terio de Industria, Turismo y Comercio of Spain) in collab-
oration with Telefónica I+D, Project SEGUR@ with refer-
ence CENIT-2007 2004

References

[1] Acunetix. Acunetix, web application security, 2010.
[2] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,

E. Kirda, C. Kruegel, and G. Vigna. Saner: Composing
static and dynamic analysis to validate sanitization in web
applications. InIEEE Symposium on Security and Privacy,
2008. SP 2008, pages 387–401, 2008.

[3] Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo. Se-
curing web application code by static analysis and runtime

protection. InProceedings of the 13th international confer-
ence on World Wide Web, pages 40–52. ACM New York,
NY, USA, 2004.

[4] M. Johns, B. Engelmann, and J. Posegga. Xssds: Server-
side detection of cross-site scripting attacks. InProceedings
of the 2008 Annual Computer Security Applications Confer-
ence, pages 335–344. IEEE Computer Society Washington,
DC, USA, 2008.

[5] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analy-
sis tool for detecting web application vulnerabilities. In2006
IEEE Symposium on Security and Privacy, page 6, 2006.

[6] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. Secubat:
a web vulnerability scanner. InProceedings of the 15th in-
ternational conference on World Wide Web, pages 247–256.
ACM New York, NY, USA, 2006.

[7] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes:
A client-side solution for mitigating cross-site scripting at-
tacks. In Proceedings of the 2006 ACM symposium on
Applied computing, pages 330–337. ACM New York, NY,
USA, 2006.

[8] A. Klein. Dom based cross site scripting or xss of the third
kind, 2007.

[9] M. Kobayashi and K. Takeda. Information retrieval on the
web. ACM Computing Surveys (CSUR), 32(2):144–173,
2000.

[10] C. Kruegel and G. Vigna. Anomaly detection of web-based
attacks. InProceedings of the 10th ACM conference on
Computer and communications security, pages 251–261.
ACM New York, NY, USA, 2003.

[11] OWASP. Xss (cross site scripting) prevention cheat sheet,
2007.

[12] RSnake. Xss (cross site scripting) cheat sheet, 2009.
[13] SecurityFocus. Bugtraq mailing lists, 2009.
[14] A. Stock, J. Williams, and D. Wichers. Owasp top 10.

OWASP Foundation, July, 2007.
[15] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,

and G. Vigna. Cross-site scripting prevention with dy-
namic data tainting and static analysis. InProceeding of
the Network and Distributed System Security Symposium
(NDSS07), 2007.

[16] G. Wassermann and Z. Su. Static detection of cross-site
scripting vulnerabilities. InProceedings of the 30th interna-
tional conference on Software engineering, pages 171–180.
ACM New York, NY, USA, 2008.

[17] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel.
Swap: Mitigating xss attacks using a reverse proxy. InPro-
ceedings of the ICSE Workshop on Software Engineering for
Secure Systems (SESS ’09), 2009.

Copyright © 2010 ICITST-2010 Technical Co-Sponsored by IEEE UK/RI Communications Chapter 337




