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Abstract

Network Intrusion Detection Systems (NIDS) play a fundamental role on
security policy deployment and help organizations in protecting their assets
from network attacks. Signature-based NIDS rely on a set of known pat-
terns to match malicious traffic. Accordingly, they are unable to detect a
specific attack until a specific signature for the corresponding vulnerability
is created, tested, released and deployed. Although vital, the delay in the
updating process of these systems has not been studied in depth. This paper
presents a comprehensive statistical analysis of this delay in relation to the
vulnerability disclosure time, the updates of vulnerability detection systems
(VDS), the software patching releases and the publication of exploits. The
widely deployed NIDS Snort and its detection signatures release dates have
been used. Results show that signature updates are typically available later
than software patching releases. Moreover, Snort rules are generally released
within the first 100 days from the vulnerability disclosure and most of the
times exploits and the corresponding NIDS rules are published with little
difference. Implications of these results are drawn in the context of secu-
rity policy definition. This study can be easily kept up to date due to the
methodology used.
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1. Introduction

It is well known that software development process is by far not perfect.
The failure to follow secure coding practices along the lack of adequate and
effective tools for the testing phase of the software life-cycle can lead to un-
controlled failures in running systems. In many occasions, these errors can
be used by malicious users to modify the expected behavior of the original
code, thus surpassing the limitations imposed by the programmer for their
own benefit. Programming errors turn then into security vulnerabilities.
The risk of these vulnerabilities being remotely exploited has dramatically
increased over the last years due to the great development of communica-
tion networks. Former romantic hackers have been replaced by a crowd of
economically driven attackers, whose efforts in breaking into systems only
focus on achieving some sort of revenue. Therefore, the release of patches
by software vendors as soon as new vulnerabilities are discovered is critical
to ensure the availability of resources and to avoid loss of data integrity or
information disclosure. Nevertheless, the inherent difficulties of the patch
development process and the incapacity or unwillingness shown by vendors
to release on time solutions to minimize system exposure, have triggered
the security problem of windows of vulnerability, namely, the period of time
vulnerabilities are disclosed but unpatched.

Vulnerability Detection Systems (VDS) are software tools used to dis-
cover vulnerable network services at risk of being exploited. The information
obtained is managed by security administrators who should be willing to take
actions to mitigate this risk while software updates are released. In spite of
that, and not in few cases, the deployment of new patches in large network
infrastructures involves such an effort that services are kept vulnerable for
long periods of time.

Network Intrusion Detection Systems (NIDS) are introduced as a solution
to monitor and detect attacks on vulnerable services. Although intrusion de-
tection has become an extensive and promising research field, where anomaly
detection techniques have been developed to deal with unknown vulnerabil-
ities, misuse detection approaches based on signatures –rules written from
intrusion trails– are the current standard in real scenarios. Commercial NIDS
have evolved into Network Intrusion Prevention Systems (NIPS), which are
capable of blocking ongoing detected attacks and introduce non-signature de-
tection capabilities based on heuristics and behaviour analysis. Nevertheless,
administrators do not go beyond the use of vendor-recommended signatures
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in approximately 65% of new deployments. Neither are blocking capabili-
ties used in more than 25% of deployments and approximately only 10% of
enterprises make an advanced use of detection engines, developing custom
signatures and using anomaly detection techniques in order to identify un-
known attacks [35]. The main reason is the high number of false alarms that
anomaly detectors present, which can cause undesired traffic blocking and
increase the difficulty to keep the normal behavior of a system up to date.
As a consequence, every commercial network prevention system deployed in a
corporative environment is to a large extent based on the signature detection
paradigm and their performance rely thus, on the development of detection
rules by security researchers. As this task requires considerable effort and
extensive previous testing to avoid false alarms and inconsistencies, perfor-
mance of signature-based NIDS depends not only on high detection ratios,
but also on the time it takes developers to release a new detection rule when
a new vulnerability is disclosed. Nowadays, every corporate security program
takes into account the need of an intrusion detection system to increase vis-
ibility of events in networks but, not in few cases, the mere fact of deploying
the system causes network administrators to become overconfident about the
level of protection. If new detection rules are not released on time and the
security perception is strongly based on the NIDS performance, the risk of
missing a successful attack highly increases.

Some research have been conducted in measuring and comparing the
patch development process of vendors [18, 31, 23] and numerous studies have
examined different approaches for evaluating NIDS effectiveness [33, 19, 28,
29, 15]. However, vulnerable time windows caused by delays in the updating
process of signature-based NIDS have not been yet explored and quantified
as a performance metric. The goal of this research is to fill this gap and apply
a formal methodology to evaluate a widely deployed open source signature-
based NIDS (i.e. Snort [6]) by means of measuring the update delays of
its detection rules, namely, the time interval between the release of a signa-
ture and the related security event. Accordingly, a time-span is statistically
modeled first from the existing delay between vulnerability disclosures and
specific rule releases. Then, the release of software patches is compared to
NIDS updates. Following, the confrontation is done against the updates of
a popular vulnerability scanner (i.e. Nessus [4]) and finally a comparison is
made between the publication of exploits and the corresponding NIDS rules
in order to measure the corresponding NIDS update delay. This comprehen-
sive work allows us to draw some conclusions, such as answering the question
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of how useful signature-based NIDS can be to mitigate risks. Figure 1 depicts
a general arrangement of the mentioned events. The relationships between
their occurrence dates are quantified and statistically estimated in this work.

NIDS-Exploit
update delay

Exploit

release

Nessus plugin

release

Vulnerability

disclosure

Software Patch

release

NIDS signature

release

Time

NIDS-Vulnerability 
update delay

NIDS-Nessus
update delay

NIDS-Patch
update delay

Figure 1: Timeline of security events considered as part of this study. These
events do not necessarily occur in this order but let us depict their time rela-
tionships and the estimated update delays in a graphical and self-explanatory
manner.

The rest of this paper is organized as follows. In Section 2 we estab-
lish the research context of this study and describe the related work in the
field of NIDS evaluation. The goal pursued, the analyzed variables and the
methodology followed to obtain valuable data is exposed in Section 3. Formal
modeling of this data and the obtained numerical results are presented and
discussed in Section 4. We gather the conclusions regarding the performance
of the NIDS under study in Section 5. Finally, future work is introduced in
Section 6.

2. Related Work

In 2002, Lippmann and Webster presented one of the first attempts to
analyze the interaction between software patches, VDS and signature-based
NIDS [22]. They introduced concepts such as “window of vulnerability” and
“window of visibility”, namely the time interval when a compromised sys-
tem can be detected by an IDS. Their work concludes that software patches,
used to prevent vulnerabilities from being exploited, are available before or
simultaneously with NIDS signatures. Thus, signature-based NIDS would be
useless if patches were installed as soon as they become available. They also
state that on large networks where it is impractical to eliminate all known
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vulnerabilities, signature-based NIDS are still useful. Moreover, they point
out that on such networks information from VDS can be used to prioritize
the large numbers of extraneous alerts caused by failed attacks and normal
background traffic. Unfortunately, their investigation lacks statistical signif-
icance due to the fact that only eight vulnerabilities and their corresponding
timelines were analyzed.

The relationship between VDS and NIDS has been widely explored. Net-
work context monitoring can be integrated in commercial and open source
NIDS to reduce the number of false positives. The potential of correlating
Snort signatures, Nessus scripts and vulnerability databases, such as Bug-
traq [1], has been studied as well as to incorporate network context in detec-
tion signatures [25]. The conclusion reached was that format differences in
vulnerability databases and reference information hindered an efficient cor-
relation of security events between NIDS and VDS. However, their analysis
is based on the state of these elements at the time of the study (i.e. 2005).
They overlooked the dynamic behaviour of the VDS, NIDS and vulnerabil-
ity databases, namely, the continuous update of their rules, scripts or new
entries, in the case of databases. Equally important, target-based intrusion
detection systems based on joint operation of a VDS and a NIDS are still
being designed. In [16], the use of independent sets of rules for each system
provided by the original vendor is suggested. Although a new method for
rule creation based on queries is proposed for the combination of both sys-
tems, independent processes lead to the development of their respective set
of rules. As a consequence, their updating times mismatch, possibly resulting
in inconsistent correlations. It is important to note that all these solutions
trying to add network context information to the intrusion detection process
may decrease false positive rate and ease the NIDS management. Neverthe-
less, these proposals miss an statistical analysis of the time dependency of
their updating processes. No correlation can be made if the NIDS detects an
attack to a vulnerability that the VDS is not yet able to discover.

Many authors, as [27, 11], have tried to characterize the vulnerability
life-cycle and the most adequate policies to follow in disclosure. Nevertheless
it remains a controversial field of research. As stated in [13], none of the
analyzed disclosure practices, immediate public, full vendor, or hybrid, is
optimal every time. Some authors [18, 31, 23] have measured the patch de-
velopment process in order to estimate the security risk arising from patching
policies. However, no comparison has been made with any intrusion detection
system. The work presented in [34] explores a quantitative characterization
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of the vulnerability cycle based on several vulnerability related events such
as disclosure, patching and exploit creation time. The Open Source Vulner-
ability Database (OSVD) [5] is used as data source to calculate the time
intervals between events. Vulnerability disclosure and patch release events
are statistically characterized, but no information about NIDS updates is
provided. We use a similar approach in this paper to statistically character-
ize the update time response of signature-based NIDS. Frei and Tellenbach
[17] quantify the statistical distribution of exploit availability timing, before
and after vulnerability is disclosed. Patching availability time distribution is
also described, concluding about the trend towards increasing vulnerability
disclosures and zero-day exploits. In [21], the analysis of the evolution over
time of exploitable vulnerabilities suggests both that the proportion of high
and medium severity vulnerabilities has not changed during the last decade
and also that many developers are still ignoring security basics.

To improve the detection capability of Snort, the generalization of the
conditions and parameters used by detection rules has been proved useful [10].
In [20], a passive scanner is proposed, which is able to gather network packets
and build a topology of devices and services being active in the network.
Other research [15, 14, 29] have addressed the difficulty of evaluating NIDS.
Although many evaluation frameworks are being developed in very different
manners, most efforts focused on developing a method for analyzing IDS
effectiveness are based in improving detection ratios while reducing the false
alarm ratio or to generate better data sets to automatically test systems,
as in [26]. In very few cases the updating process of signature-based NIDS
is characterized or considered as a quality measure. In [32] the problem of
rule package update and the need to stop the engine to upload a new set of
rules is addressed. Some developments like the one presented in this paper
could be use to update the detection engine with one released rule at a time
without the handicap of long vulnerable windows due to the updating method
of packaged rules. In [12] some drawbacks of misuse based approaches are
examined, as the need of regularly updating a knowledge base in order to add
new intrusion scenarios, work that must be performed by experts or system
designers.
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3. Goal and Methodology

First, this section presents the goal pursued by this research, then ex-
poses the different variables that have been used as reference for calculations
and finally establishes the experimental setup designed in order to gather
correlated data from different sources.

3.1. Goal

The performance of intrusion detection systems is usually measured in
terms of the trade-off between the detection rate and the false alarm rate.
However, it also depends on how fast the detection engine is able to respond
to new threats. Regarding signature-based NIDS, this is the time it takes
the security researchers to release new rules when new vulnerabilities are
disclosed. The aim of this work is to evaluate and characterize this time re-
sponse in a widely deployed open source NIDS (i.e. Snort) using the concept
of update delays. These delays provide information about the NIDS response
against vulnerability disclosure and exploit release, and let us evaluate the
utility of the NIDS in comparison to the patching development process and
VDS plugin release.

3.2. Analyzed Variables

Four different variables have been defined to evaluate the update response
of signature-based NIDS, namely, the vulnerability disclosure time, the soft-
ware patch release time, the vulnerability scanner update time and the ex-
ploit release time. These variables allow to estimate and compare the NIDS
update delay from different perspectives.

• Vulnerability Disclosure Time

In order to characterize the update delay of the NIDS rules from vul-
nerability disclosure, the time when vulnerabilities are made public has
to be established. Two independent public and commonly referenced
databases have been used for this purpose:

– National Vulnerability Database (NVD) [3]

The NVD comprises the Common Vulnerabilities and Exposures
identifiers (i.e. CVEs) and intends to be a public vulnerability
index where the correlation between products, vulnerabilities and

7
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their severity is defined. Every CVE includes the date it was incor-
porated to the database. As CVEs are widely used as a reference
by the security research community, this date can be established as
the vulnerability disclosure time. A CVE definition also includes a
Common Vulnerability Scoring System (CVSS) index. CVSS is a
standard in vulnerability severity evaluation. In this work, CVSS
allows us to relate NIDS update delay to the related vulnerability
risk.

– Bugtraq Mailing List [1]

Bugtraq is a moderated mailing list based on the full disclosure
philosophy, whose goal is to facilitate the discussion between re-
searchers and the publication of new vulnerabilities and related
information. Each vulnerability is associated with a Bugtraq iden-
tifier and, in most definitions, the related CVE is provided in order
to correlate both databases. The publication date of the identifier
is established as the vulnerability disclosure time.

• Software Patch Release Time

We use the software patch release date to quantify the utility of the
NIDS versus the patching process. The Open Source Vulnerability
Database (OSVDB) [5] gathers a large collection of vulnerability defi-
nitions that are continuously updated. Each vulnerability has an ID,
a description, a classification and available external references. If the
release date of the solution to the vulnerability is included in the defi-
nition, it is used as the patch release date, which will be compared with
the associated Snort detection rule if it is also included. As stated in
[34], the OSVDB is one of the most complete public sources of infor-
mation about vulnerabilities and allows us to establish the time when
security patches are made available by vendors. The Snort rule release
date is fetched from Snort website [6].

• Vulnerability Scanner Update Time

The utility of the NIDS when used in combination with other tools is
addressed by the analysis of the update delay between the vulnerability
scanner plugins and the corresponding NIDS rules. The Nessus vulner-
ability scanner has been considered as the reference VDS as it is widely

8
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used by security administrators to audit and verify the existence of vul-
nerable network services. Each vulnerability is detected by a plugin,
whose release date is used to calculate the NIDS update delay.

• Exploit Release Time

The exploit release date has been used to characterize the update time
response of the NIDS in relation to the publication of new exploits. Al-
though not for every entry, vulnerability definitions in the Open Source
Vulnerability Database include the date when an exploit that can take
advantage of certain vulnerable software is made public.

3.3. Experimental setup

The Snort intrusion detection system is a signature-based NIDS able to
capture and analyze traffic in IP networks in real time. It was first devel-
oped and released by M. Roesch in 1998 [30] and has became a standard in
open source intrusion detection. Although self-written rules can be added
by anyone, the default set of rules of the engine is developed by the Snort
Vulnerability Response Team (VRT). All rules are made available within
packages released with no periodicity. Paying subscribers can access these
packages as soon as they are released while registered users must wait 30
days after their initial release to obtain them free of charge. The Snort VRT
classifies rules as low, medium or high depending on their risk level. In this
paper, every available type of rule is used to compute delays and no qualita-
tive distinction is made between them. In packages, rules are also categorised
as updated or new. Updated rules are modified in order to detect new attacks
to known vulnerabilities while new rules are released after a new vulnerabil-
ity is disclosed. Information about an attack to a known vulnerability can
be included as part of an existing vulnerability definition or result in a new
CVE or Bugtraq ID. Thus, it is not possible to correlate an updated rule to a
specific vulnerability as no further information is provided by Snort. In order
to ensure that a rule can be correlated with a specific vulnerability, only new
rules are considered. The rules this study is based on, are new detection
rules released between November 6th, 2007 and August 25th, 2010, whose
description is available at Snort website [6].

We have built several Python scripts in order to gather information about
a significant number of signatures and vulnerabilities. Figure 2 presents a
diagram of the entire setup. Information retrieval scripts, which can be run
at any time to update the analyzed data, allow us to obtain information
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from the different sources. The OSVDB vulnerability definitions include
several references to external databases and security tools. These are used
to establish the exact Snort rule, CVE, Bugtraq ID and Nessus plugin ID
that is related to the same vulnerability. The OSVDB provides itself some
methods to be exported to a local database, thus correlations between Snort
IDs and other references are obtained through the appropriate queries. Our
results takes into account all data included in this database up to September
15th, 2010.

Snort ID
Release Date

Snort.org NVD
CVE
Release Date
CVSS

Snort ID
CVE
Bugtraq ID
Nessus Plugin ID
Patch Release Date
Exploit Release Date

Vulnerability ID
OSVDB

Bugtraq ID
Release Date

Bugtraq
Plugin ID
Release Date

Nessus Code

Correlated
Release 
Time data

Information 
Retrieval Scripts

Update Delays 
Histogram 

Generation Scripts

Snort ID - External Reference ID

Correlations

Estimated 
Model 

Parameters

Statistical 
Modeling Software

Time Release Data

Figure 2: Complete experimental setup. Information retrieval scripts gather
and correlate data from different sources. Correlated data is used to com-
pute delays and their cumulative distributions. Finally, statistical models are
adjusted using statistical software [2].

NIDS rule release dates are obtained from Snort advisories site. This
source does not provide any method to access information about rules and
release dates in a formal manner, thereby it is necessary to parse available
web data as long as it remains structured. Previous information to November
2007 is not structured and is, therefore, not parseable. Release dates of CVE
and Bugtraq IDs are gathered from their respective web databases. Informa-
tion regarding all vulnerabilities is well structured and can be easily retrieved.
In addition, Nessus plugins release dates have been obtained straight from
their code using a script built for that purpose. Software patches and ex-
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Simultaneously Included References OSVDB Vulnerability Definitions

Snort ID & CVE 10280 vulnerabilities
Snort ID & Bugtraq ID 7575 vulnerabilities
Snort ID & Software Patch 4729 vulnerabilities
Snort ID & Nessus Plugin 37839 vulnerabilities
Snort ID & Exploit 4130 vulnerabilities

Table 1: Each value represents the available number of vulnerabilities in the
OSVDB that include an associated Snort ID and another reference. The total
number of gathered dates is lower than available correlations in OSVDB as
not all Snort ID rule release dates are available from Snort site.

ploits release dates have been obtained from the OSVDB. Table 1 shows a
summary of the vulnerability definitions available in the OSVDB including
an associated Snort ID and other external reference.

Once that release time data from all sources is properly correlated, a script
is used to calculate the cumulative distributions of the analyzed variables.
These histograms are the input of the statistical modelling software used to
estimate probability distributions of the update delays and their numerical
parameters.

Figures 3 and 4 present the pseudocode of the information retrieval scripts
that have been used to obtain relevant information from the different data
sources. Figure 5 presents the pseudocode of the update delay histogram gen-
eration script. Correlated release time data is used to compute delays and
calculate the cumulative probability distributions. All scripts are available
from: http://www.lab.inf.uc3m.es/∼adiaz/NIDSupdatedelays.zip.
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WHILE OSVDB.vulnerabilityID NOT null

READ OSVDB.vulnerabilityID

IF OSVDB.vulnerabilityID.snortID NOT null AND OSVDB.vulnerabilityID.extReferenceID NOT null

READ OSVDB.vulnerabilityID.snortID

READ OSVDB.vulnerabilityID.extReferenceID

READ snortSite.snortID.releaseDate

READ externalDatabase.extReferenceID.releaseDate

CorrelatedTimeData = (snortID, snortIDReleaseDate, extReferenceID, extRefIDReleaseDate)

WRITE CorrelatedTimeData

Figure 3: Pseudocode of information retrieval scripts for CVE, Bugtraq and
Nessus release data.

WHILE OSVDB.vulnerabilityID NOT null

READ OSVDB.vulnerabilityID

IF OSVDB.vulnerabilityID.snortID NOT null AND OSVDB.vulnerabilityID.exploitDate NOT null

READ OSVDB.vulnerabilityID.snortID

READ OSVDB.vulnerabilityID.exploitDate

READ snortSite.snortID.releaseDate

CorrelatedTimeData = (snortID, snortIDReleaseDate, exploitReleaseDate)

WRITE CorrelatedTimeData

Figure 4: Pseudocode of information retrieval scripts for Software patches and
exploit release data.

WHILE CorrelatedTimeData NOT null

READ CorrelatedTimeData

delayID = snortID.releaseDate - externalReferenceID.releaseDate

delayIDVolume = COUNT delayID

WRITE (delayID,delayIDVolume)

Figure 5: Pseudocode of update delay histogram generation scripts.

12



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4. Results & Data Modeling

In this Section, the update delays calculated from each of the analyzed
variables are statically modeled and numerical results are presented. The
measures directly obtained by the scripts have been depicted in several his-
tograms allowing us to estimate the best fitting probability density function
and its parameters using the Kolmogórov-Smirnov test [24]. Table 2 shows
how measures are calculated. The titem –with item ∈ {CVE, Bugtraq, patch,
plugin, exploit, snort}– indicates the release date of the corresponding item.
According to these definitions of update delays, a negative delay implies that
the Snort rule is released before the corresponding item is made public.
Hence, positive delays are measured when the Snort rule is released after the
event of reference. The higher this delay becomes, the higher is also the risk
that a successful attack to a network service goes undetected.

Measure Definition (days)

NIDS-CVE update delay tsnort − tCV E

NIDS-Bugtraq update delay tsnort − tbugtraq

NIDS-Patches update delay tsnort − tpatch

NIDS-Nessus update delay tsnort − tplugin

NIDS-Exploits update delay tsnort − texploit

Table 2: Definitions of Snort NIDS update delay in relation to related security
events.

4.1. NIDS Update Delay from Vulnerability Disclosure

Figure 6 represents two estimations of the probability distribution of the
Snort rule updating process. In both cases, when CVEs and Bugtraq IDs
are established as time references for the disclosure of new vulnerabilities, it
can be stated that most detection rules are released within the first 100 days.
In order to thoroughly characterize both distributions, Figures 7 and 8 show
the specific parameters for each estimation.
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Figure 6: Probability distributions of Snort update delay vs. CVE and Bug-
traq IDs publication dates. A positive delay reflects that a Snort rule is re-
leased after the related reference is publicated in the corresponding database.

Parameter Value

κ 0.50988
σ 115.41
µ 100.26

fCV E(x) =







(1+κz)−1−1/κ

σ(1+(1+κz)−1/κ)
2 κ 6= 0

exp(−z)

σ(1+exp(−z))2
κ = 0

Figure 7: Parameters and probability density function of the generalized logis-

tic distribution, the best fitting distribution to the update delay between Snort

rules and CVEs according to Kolmogórov-Smirnov test.

Parameter Value

κ 0.54174
σ 110.79
µ -30.173

fBugtraq(x) =

{

1
σ

(

1 + κx−µ
σ

)

−1−1/κ
κ 6= 0

1
σ
exp

(

−x−µ
σ

)

κ = 0

Figure 8: Parameters and probability density function of the generalized

Pareto distribution, the best fitting distribution to the update delay between
Snort rules and Bugtraq IDs according to Kolmogórov-Smirnov test.
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4.2. NIDS Update Delay from Software Updates

Figure 9 represents the probability distribution estimation of the time
interval between the release of the Snort rule and the release of the corre-
sponding security patch capable of fixing the related vulnerable service. The
obtained distribution, centered around positive delay values, suggests that
the response of the NIDS updating process is slightly slower than vendors
patching release. In order to thoroughly characterize the distribution, the
specific parameters for the estimation are presented.

Parameter Value

α 24.433
β 17036
γ -592.74

fpatch(x) =
exp (−β/ (x− γ))

βΓ(α) ((x− γ) /β)α+1

Figure 9: Estimated probability distribution of Snort update delay vs. patch
release. Parameters and probability density function of the three-parameters

Pearson 5 distribution, the best fitting distribution to this measure according
to Kolmogórov-Smirnov test.

4.3. NIDS Update Delay from Vulnerability Scanner

Figure 10 represents the probability distribution estimation of the time
interval between the Snort rule update, which is able to detect an attack to
a vulnerable service, and the release of Nessus plugin able to detect the cor-
responding vulnerable service. The obtained distribution, centered around
positive delay values, suggests that the response of the NIDS rule update
process is typically slower than the release of new Nessus plugins when a
new vulnerability is disclosed. In order to thoroughly characterize the distri-
bution, the specific parameters for the estimation are presented.
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Parameter Value

α 9.3016
β 4728.4
γ -356.16

fNessus(x) =
exp (−β/ (x− γ))

βΓ(α) ((x− γ) /β)α+1

Figure 10: Estimated probability distribution of Snort update delay vs. Nessus
plugins release. Parameters and probability density function of the three-

parameters Pearson 5 distribution, the best fitting distribution to this measure
according to Kolmogórov-Smirnov test.

4.4. NIDS Update Delay from Exploit release

Figure 11 represents the probability distribution estimation of the time
interval between the release of a functional exploit that take advantage of
a vulnerability and the publication of the Snort rule capable of detecting
such specific attack. The obtained distribution is centered around positive
delay values and increasing probabilities around 0 days. It suggests that the
exploit development is based on the information gathered from the disclosed
vulnerability while the NIDS rule is created in order to detect an specific
exploit after it has been made public. Therefore, the response of the NIDS
update process seems slightly slower than attackers exploit development. In
order to thoroughly characterize the distribution, the specific parameters for
the estimation are presented.
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Parameter Value

α 1.661
β 296
γ -121.7

fexploit(x) =
α

β

(

x− γ

β

)α−1(

1 +

(

x− γ

β

)α)−2

Figure 11: Snort update delay vs. exploit publication dates estimated proba-
bility distribution. Parameters and probability density function of the three-

parameter log-logistic distribution, the best fitting distribution to this measure
according Kolmogórov-Smirnov.

4.5. Discussion

Statistical values from every estimated distribution are shown in Table 3.
This let us draw conclusions about the NIDS performance against vulnerabil-
ity disclosure, software patch releases, VDS updates and exploit publication
timing. The Standard Error column provides a quality index of the statistical
results.

Measure Sample Size Average Median (50%) Standard Error

NIDS-CVE update delay 3032 delays 236.66 days 27 days 7.8336 days
NIDS-Bugtraq update delay 2270 delays 211.6 days 19 days 9.1755 days
NIDS-Patches update delay 1730 delays 138.35 days 160 days 5.173 days
NIDS-Nessus update delay 15038 delays 221.68 days 216 days 2.3064 days
NIDS-Exploits update delay 658 delays 402.53 days 145.5 days 21.537 days

Table 3: Statistical information of the NIDS rule update delay distribution for
each analyzed measure. All displayed values are in days excluding the sample
size, namely the total number of delays used for the estimation.

The column labeled as Sample Size shows the total number of delays
that have been used to generate histograms for each measure. The total
number of Snort rules release dates retrieved from Snort.org is 4411. In
most cases, a detection rule refers to a single vulnerability and only one
correlation with a single reference is possible. A single delay value is thus
calculated. Nevertheless, in a few occasions, a single rule can refer to two or
more vulnerabilities, VDS plugins, patches or exploits. In this case, several
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delays can be calculated. Sample size of Nessus plugins measure counts up
to 15038 when only 4411 Snort rules have been used for the computation. As
mentioned, several Nessus plugins refer to the same Snort rule. Therefore,
one Snort rule can detect attacks to several vulnerabilities that are discovered
by different Nessus plugins and, according to this, the rule presents several
independent delays.

The column labeled as Average shows the average time in days that it
takes researchers to release a rule after the corresponding reference is made
public. The NIDS rules present the highest average update delay on exploit
publications. Therefore, if CVE and Bugtraq release dates are considered as
the vulnerability disclosure date, it can be stated that most exploits are de-
veloped before the analyzed vulnerability becomes public. More specifically,
Table 4 shows the percentage of NIDS rules that are released faster than
the corresponding reference. The ratio of negative, null and positive update
delays is shown for each case.

Measure Negative Delays Null Delays Positive Delays

NIDS-CVE update delay 6.46% 6.4% 87.13%
NIDS-Bugtraq update delay 1.14% 2% 96.85%
NIDS-Patches update delay 4.57% 2% 93.43%
NIDS-Nessus update delay 3.26% 0.56% 96.17%
NIDS-Exploits update delay 3.49% 0.61% 95.89%

Table 4: Percentage of negative, null and positive delays for each measure.

Median values in Table 3 are the center of the distribution. The median
becomes significative in cases like these where very high delay values have a
strong influence on the average. When measuring the time interval between
the disclosure of a vulnerability and the publication of the associated rule, we
have observed that some specific rule updates are released very late, specially
when a new form of attack is discovered for an already known old vulnera-
bility. Table 5 shows an example of a detection rule with an extremely high
update delay. The vulnerability identified as OSVDB ID 1166 was disclosed
in 1999 according to the creation date of both related CVE and Bugtraq
ID. It refers to a remote input validation error in the Microsoft NT Local
Security Authority (LSA), causing a denial of service (DoS). A detection rule
for the attack using UDP packets was shortly released. In 2009, the same
vulnerability was openly proved to be exploitable by TCP packets and a new
detection rule was released. As a result, a potentially successful attack has
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not been detected by the NIDS during almost 10 years. This extreme high
delays values tend to shift the average of the update delay distribution, thus
the 50th percentile seems more significative and allows us to gain more in-
formation in order to build security metrics. Nevertheless, we consider that
the occurrence of this high delays should arouse serious concerns, not only
in NIDS developer teams but also in the research community.

OSVDB ID Disclosure Date Snort ID Rule release date update delay

1166 1999-12-16 529 Unknown Unknown
1166 1999-12-16 15448 2009-04-08 3401 days

Snort ID Description

529 NETBIOS DCERPC NCADG-IP-UDP srvsvc NetrShareEnum null policy handle attempt
15448 NETBIOS DCERPC NCACN-IP-TCP srvsvc NetrShareEnum null policy handle attempt

Table 5: Example of Snort rule released with a extremely high update delay.

The obtained NIDS update delays have been correlated to the correspond-
ing CVSS index in order to characterize how the NIDS update process is
influenced by the severity of disclosed vulnerabilities. This index categorizes
severity from 1 to 10, being 10 the most severe case. Figure 12 shows aver-
aged NIDS update delays from CVE release for vulnerabilities with the same
CVSS. NIDS-CVE Update Delay has been modeled using a 6th order poly-
nomial regression in order to avoid overadjustment to data but obtaining a
coefficient of determination R2 = 0.5059. Figure 12 shows how the update
delay decreases for higher risk vulnerabilities.

Therefore, when a new vulnerability is disclosed and a CVE is created,
the associated CVSS index can be used by security officers to estimate the ex-
pected average update delay of the deployed NIDS. The estimated regression
used in Figure 12 and formalised by its coefficients in Table 6 will provide
a numerical delay in days that can be taken into account when following a
strategy to protect vulnerable systems. Table 7 shows the estimated values
from sample data that have been used to derive the statistical model.
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Figure 12: Average NIDS update delay from CVE release vs. Common Vul-
nerability Scoring System index.

NIDS-CVE Update Delay Polynomial Regression Coefficients

0 1 2 3 4 5 6
40774 -44690 19818 -4516.2 559.43 -35.846 0.9311

Table 6: Estimated coefficients for the polynomial regression adjusted to the
non-linear relationship between CVSS and NIDS-CVE Update Delay.
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Average NIDS-CVE Update Delay vs. CVSS

CVSS Avg. Update Delay CVSS Avg. Update Delay
2,1 1793 days 6,4 32,02 days
2,6 1305 days 6,5 86,29 days
3,5 29 days 6,8 93,12 days
3,6 27 days 7,1 289,67 days
4 14,88 days 7,4 36 days
4,3 91,88 days 7,5 667,49 days
4,6 1703,6 days 7,6 341,86 days
5 624,45 days 7,8 283,26 days
5,1 689,6 days 7,9 73,5 days
5,4 7 days 8,5 -1 days
5,5 191,67 days 8,8 -118,67 days
5,8 -25,19 days 9 80,14 days
6 2,67 days 9,3 26 days
6,1 475 days 10 179,82 days
6,2 554 days

Table 7: NIDS update delays on average from the CVE and the corresponding
CVSS obtained from the total number of vulnerabilities used as sample data.

The perception of security in corporate environments is strongly related
to the NIDS performance. As stated in the ISO/IEC 27005 code of practice
for information security risk management from the International Organi-
zation for Standardization (ISO) [8] and the International Electrotechnical
Commission (IEC) [7], quantitative risk estimation is based on a numeri-
cal calculation according to security metrics on the asset. Signature-based
NIDS metrics are typically based on detection rates and ease of management.
Nevertheless, the NIDS updating process must be taken into account in com-
bination with patching policies and other security tools. The experimental
setup presented in Section 3 and the formal model derived from data in Sec-
tion 4, provide a way to automatize the process of keeping numerical results
up to date. Therefore, the estimated statistical distributions of these delays
can be periodically updated and used to quantitatively evaluate security risk
associated to NIDS in terms of its updating process.

5. Conclusions

In this paper we have characterized the time response of the Snort rule re-
lease process. This task has been done through the comparison of its update
time versus several related security events such as vulnerability disclosures,
software security patch releases, Nessus plugin releases and exploit publi-
cations. The time interval between each of these events and the release of
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NIDS rule updates have been defined as different NIDS update delays. To
the best of our knowledge, this is the first comprehensive study that statisti-
cally analyzes signature-based NIDS update delays. Specific conclusions are
drawn from the shape of the estimated probability distributions. When the
vulnerability disclosure date is established as the reference event to calculate
how fast the NIDS is updated, most of the NIDS rule updates are released
within the first 100 days. The positive profile of the distributions and the
little number of negative update delays let us state that the Snort NIDS is
certainly a reactive technology.

The performance of the NIDS updates related to the software patches
have also been measured. From the obtained results, we conclude that
Snort updates slightly slower than patches are released. Nevertheless, a
non-negligible number of negative delay values have been measured, mean-
ing that some detection rules are released before the software patch. This
makes this NIDS an effective tool when it comes to alerting the adminis-
trators of attacks targeting not yet patched vulnerable services. As stated
in [11] and [23], security administrators are not always able to immediately
deploy software updates in every system but attacks do increase considerably
with their release. Despite the time it takes researchers to release a specific
detection rule, the updated NIDS can prevent vulnerable services to be com-
promised until new patches are completely deployed or vulnerable systems
are removed from the network.

The straight conclusion obtained from the analysis of the NIDS update
delay from Nessus plugin releases is that the VDS has a faster response
to the disclosure of vulnerabilities. Hence, in a properly designed security
policy, the VDS should be used as the primary tool to early detect vulnerable
services and consequently, take actions to harden systems. Signature-based
NIDS can also alert from a vulnerability when an attack targeted to a service
is detected but not as early as the VDS. As a matter of fact, new Nessus
plugins are released almost every day, unlike Snort, whose updates are always
done through packages of rules released with no periodicity.

Although the release of NIDS rules seems slower than publication of ex-
ploits, the maximum of the distribution is around zero, meaning that most of
them are made public almost at the same time. This suggests that the devel-
opment process begins for both elements after the vulnerability is disclosed
but in many cases, the detection rule is based on the exploit definition and
not in the vulnerability. An interesting conclusion from the average NIDS
update delay on exploits in comparison with CVE or Bugtraq update delay,
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is that many exploits are developed and released before the vulnerability is
disclosed.

The relationship between NIDS update delay and the severity of vulner-
abilities has also been analyzed. CVEs and their CVSS severity index have
been used in order to quantify the risk of the corresponding failure. Results
show that when the CVSS of vulnerabilities approaches 10 (i.e. the maxi-
mum), the average NIDS update delay decreases. We consider this a positive
result that implies that NIDS rules researchers are aware of the potential
impact of vulnerable services. Therefore, detection rules protecting high risk
vulnerable services are released faster. According to the estimated regression
of the NIDS update delays in relation to the severity of the disclosed vulner-
ability, some implications in the context of security policy definition and de-
ployment have been drawn. Specifically, we provide a way to approximately
quantify, the NIDS update delay (in days) depending on the vulnerability
severity (CVSS). This model and the practical consequences of the results
presented can help network security administrators to develop more effective
strategies in the regular vulnerability disclosure scenario.

6. Future Work

Lippmann and Webster [22] tried in 2002 to determine the role of the
NIDS and its performance against the VDS and the patching process tim-
ing. Although our findings agree with some of their conclusions, the size of
the analyzed sample and the statistical model we present represent a quan-
titative and a qualitative improvement. According to our results and their
implications, we encourage to build a security system that gathers infor-
mation from the services the organization is running and checks for public
vulnerabilities of those services as well, reporting if there is any software or
NIDS update to mitigate those vulnerabilities. This kind of system, which
should continuously perform passive traffic analysis to identify active network
services, would help to reduce the time the system is exposed. This would
allow system administrators to take action in order to mitigate the effects
of possible attacks even if there is no published solution to the vulnerabil-
ity. Well established correlations between vulnerabilities, detection plugins
and signatures are needed. A proposal in this direction was presented in
2005 [25]. Massicotte et al. tried to correlate Snort detection signatures
with Nessus vulnerability detection plugins but authors were not successful
as the information available from different databases was insufficient at that
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time. Nowadays, towards an effort to improve their security tools manage-
ment, vendors have better structured their databases and some open source
initiatives like the OSVDB are becoming a worldwide available repository
of vulnerability information. In our work, we have been able, in the worst
case, to correlate up to 4130 vulnerability entries (in a 2 years, 9 months and
19 days period). Recently developed Sourcefire RNA (Real-time Network
Awareness) [9] commercial tool also focuses on passive network discovery
and targeted vulnerability assessment. However, as it is based on Snort IDS,
update delays are, unfortunately, exactly those described in this work.
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