
Who’s Accessing My Data? Application-Level
Access Control for Bluetooth Low Energy?

Pallavi Sivakumaran and Jorge Blasco

Royal Holloway, University of London
{pallavi.sivakumaran.2012,jorge.blascoalis}@rhul.ac.uk

Abstract. Bluetooth Low Energy (BLE) is a popular wireless technol-
ogy deployed in billions of devices within the Internet-of-Things (IoT).
The data on these devices is often related to user health or used to control
safety-critical functionality, which makes it vital to protect the data from
unauthorised access or manipulations. The only mechanism that is fully
defined within the BLE specification for protecting sensitive data is pair-
ing. This occurs at the device-level rather than at the application-level,
and leaves BLE data vulnerable to unauthorised access at higher layers.
When a BLE device interacts with a multi-application platform (i.e., a
device that hosts more than one application, such as a mobile phone),
when one application is able to access data from the BLE peer, all other
applications on the same multi-application platform are also implicitly
allowed the same access. The solutions suggested thus far for this vulner-
ability are either impractical for most users, not backward compatible
with billions of existing devices, or do not suit normal BLE usage scenar-
ios. In this paper, we conduct an analysis considering practical aspects
regarding the BLE ecosystem, and thereafter propose a solution that will
extend the available protection for BLE data to the application layer.
Our solution ensures protection by default for BLE data, and is entirely
backward compatible with existing BLE implementations, requiring no
modification to resource-constrained BLE peripherals or companion ap-
plications. We also present an open-source proof-of-concept implemented
on the Android-x86 platform. This, when tested against experimental
and real-world devices and applications, demonstrates the viability and
efficacy of our proposed solution.

Keywords: Bluetooth Low Energy · Application-level security · Multi-
application platforms · GATT.

1 Introduction

The Bluetooth Low Energy (BLE) technology enables compatible devices to
exchange small amounts of discrete data over a wireless interface, in an energy-
efficient manner. Typical usage scenarios, particularly in consumer applications,

? This research has been partially sponsored by the Engineering and Physical Sci-
ences Research Council (EPSRC) and the UK government as part of the Centre
for Doctoral Training in Cyber Security at Royal Holloway, University of London
(EP/P009301/1).



2 P. Sivakumaran and J. Blasco

involve communications between a resource-constrained “peripheral”, such as a
fitness tracker or glucose monitor, with a more powerful “platform device”, such
as a mobile phone or personal computer (PC). More precisely, the communication
will be between the BLE peripheral and an application on the phone or PC.

The Bluetooth specification, defined by the Bluetooth Special Interest Group
(SIG), provides optional mechanisms for restricting access to BLE data on a
per-device basis, via Bluetooth pairing. However, despite BLE being a full-stack
protocol [28], the specification does not provide concrete, well-defined mecha-
nisms for restricting access to BLE data on a per-application basis. This lack of
application-level restrictions is problematic on devices such as mobile phones and
computers, which normally host multiple applications. On such devices, when
one application is able to access data from a BLE peripheral, all other appli-
cations are implicitly given access to the same data, even if the BLE data is
protected by pairing [25]. This vulnerability makes it possible for unauthorised
applications to access sensitive data from BLE peripherals. Depending on the
BLE device, this could have serious consequences for user privacy (e.g., if user
health data is leaked from fitness or medical devices) or safety (e.g., if a BLE
door lock or eScooter is manipulated).

Previous suggested solutions include implementation of application layer se-
curity by developers or modification of the mobile platform [1,18]. However,
these do not enable protection by default across all possible implementations of
the BLE technology. Platforms such as Android and iOS currently implement
restrictions on applications by requiring the granting of some permissions by
the user [1,4]. However, these restrictions are not present on other multi-app
platforms and, in any case, do not restrict access on a per-peripheral basis.

A solution that is proposed to mitigate this vulnerability must take into
consideration not only technical limitations but also practical issues. That is,
a highly secure solution is not particularly useful if it will not be implemented
in the vast majority of BLE deployments. In this work, we define security and
system requirements based on typical BLE configurations, usage mechanisms
and user involvement. We also conduct a pragmatic multi-faceted stakeholder
analysis. Based on these factors, we propose a specification-level solution, which
meets the requirements that we have set out. Our solution achieves protection
by default, minimal overhead for resource-constrained devices, and full backward
compatibility with existing BLE systems.

To illustrate the viability and efficacy of our solution, we implement a Proof-
of-Concept (POC) on the Android-x86 platform. Our POC demonstrates that,
with practicable modifications to the multi-application platform, covert data
access attempts are brought to the attention of users and are therefore defeated.

Key contributions. In summary, our contributions are as follows:

– We set out requirements (§3) for a solution to the unauthorised data access
vulnerability that is present in multi-application BLE platforms (§2).

– We perform a stakeholder analysis with practical considerations, and de-
termine that an asymmetric specification-level modification ensures greatest
coverage for a solution (§4).



Application-Level Access Control for Bluetooth Low Energy 3

– We describe (§5), evaluate (§6), and implement an open-source POC for (§8)
a solution that involves minimal changes to the BLE stack.

– We detail benefits realised by our solution in addition to those implied by
our set requirements (§7).

2 Background: Unauthorised Data Access in BLE

BLE is a full-stack protocol, which comprises three main subsystems: the Con-
troller, the Host and Applications [28]. The functionality of the Controller and
Host are defined within the core Bluetooth specification, while “applications”
are defined in terms of profiles within individual specifications (e.g., Heart Rate
Profile or Glucose Profile specification). Profile specifications in turn reference
one or more service specifications. The core specification as well as profile and
service specifications are defined and maintained by the Bluetooth SIG.

Each service referenced by a profile contains a number of characteristics,
where a characteristic holds a single discrete piece of information. Services and
characteristics are both types of BLE attributes, governed by the Attribute Pro-
tocol (ATT). The hierarchical structuring of attributes into characteristics and
services is controlled by the Generic Attribute Profile (GATT).

Attributes can have different permissions applied to them: access permissions
dictate whether an attribute can be read/written; authentication/encryption per-
missions indicate whether an authenticated/encrypted link (achieved via pair-
ing) is required between the two devices before the attribute can be accessed;
authorisation permissions indicate whether client authorisation is required.

SIG-defined service/profile specifications define security considerations in
terms of the different permissions. For example, the Glucose Profile states “All
supported characteristics specified by the Glucose Service shall be set to Security
Mode 1 and either Security Level 2 or 3 ”. The “Security Mode 1... Level 2 or
3 ” refers to encryption and authentication permissions. To satisfy the security
requirements defined in the Glucose Profile, implementing devices (for example,
a glucose meter and a mobile phone) must undergo pairing.1

Pairing takes place between the lower layers of the two devices, and does
not extend to the application layer. If the mobile phone in this example hosted
a single, trusted application, then the security requirements specified in the
Glucose Profile might be sufficient to protect the glucose measurement data
from unauthorised access.2 However, mobile phones typically host numerous,
potentially untrusted applications. Therefore, the fact that the Glucose Profile
does not require restricting access at the application level means that, once one
application on a mobile phone has triggered pairing (and bonding) with the
glucose meter, any other application on the mobile phone will also be able to
access the glucose measurement data. We have previously demonstrated that
such access is possible in a covert manner on the Android platform [25].

1 The communicating devices will normally also bond, i.e., store long term keys.
2 For the purpose of our discussion, we assume a secure pairing process.



4 P. Sivakumaran and J. Blasco

We observe that authorisation permissions can restrict access at the applica-
tion layer. However, implementing these permissions can reduce flexibility and
interoperability by tying a BLE device to a single application (where the user
may desire a choice). Also, these permissions are not required in any SIG-defined
service specification except the Insulin Delivery Service. Further, the mechanism
of how to accomplish client authorisation is left up to the developer. A large num-
ber of existing BLE devices either do not implement authorisation permissions
or implement them in an insecure manner [25].

Note that the problem of unauthorised data access is present only when
a platform hosts multiple applications, as with mobile devices. However, the
vulnerable data tends to be that obtained from BLE peripherals, which typically
host only a single application.

3 Environment

In this section, we outline our threat model (§3.1) and define a set of security and
system requirements (§3.2, §3.3) that we believe should apply to any solution that
addresses the problem of unauthorised BLE data access on multi-app platforms.

3.1 Threat Model

We make the assumption that any app on the multi-application platform issues
BLE requests via a BLE stack implemented by the platform, i.e., the appli-
cation cannot circumvent the stack that is implemented by the platform. We
also assume that the application cannot directly access the components of the
platform-implemented BLE stack or influence its operations by any means other
than via robust platform APIs. In addition, we assume an honest and uncompro-
mised platform and peripherals. However, applications are from multiple third-
party developers and are assumed to be untrusted. These applications may abuse
the unauthorised data access vulnerability to obtain and manipulate data being
stored on a BLE peripheral without the user’s knowledge and consent. This is
the kind of behaviour our solution aims to protect against.

3.2 Security Requirements

To protect against unauthorised data access attacks at the application-layer,
we define three main security requirements. These are based on typical multi-
application platform configurations and usage, and the shortcomings that we
have identified with existing restriction mechanisms.

SecRQ1: Prevention of unauthorised access to BLE data. An application
should not be able to access the data from a BLE peer device without the user’s
knowledge and explicit authorisation. Note that the term “authorised” in this
context should not be confused with the “authorisation permissions” already
defined within the Bluetooth specification.



Application-Level Access Control for Bluetooth Low Energy 5

SecRQ2: Per-device access control. User authorisation should be granted
to an application for every peer device individually. That is, if an application is
granted permission to access one BLE peer device, it should not automatically
be possible for that application to access any other BLE peer device.

SecRQ3: Access revocation. The user must be able to revoke access that has
previously been granted to an application for a BLE peer device. This limits the
exposure of data in the event of late identification of malicious app behaviour.

3.3 System Requirements

There are billions of BLE-enabled devices in use today [6] and most are in
consumer applications, where the end users are not necessarily highly technical.
This results in a need for security solutions that do not require high levels of
user involvement. In addition, most BLE peripherals are resource-constrained
by design and will not be able to handle large amounts of processing. This
makes complex cryptographic protocols less desirable. While these factors are
not directly related to the security of a system, they need to be taken into
consideration when proposing a security solution. We therefore define three key
system requirements, bearing in mind user involvement, the number of BLE
devices extant in the world today and the asymmetric nature of resources on
communicating BLE devices.

SysRQ1: Protection by default. All devices that implement (the modified
version of) BLE should incorporate protection by default. Any specification-
compliant BLE system should automatically protect against and be protected
from unauthorised data access at the application layer, without the need for
additional user intervention (beyond the explicit granting of permissions or au-
thorisation).

SysRQ2: Backward compatibility. Devices that incorporate the solution
should function with existing devices. Given that billions of BLE-enabled devices
exist today, a solution that obsoletes such a vast number of devices would not
be acceptable.

SysRQ3: Minimal overhead for resource-constrained devices. The so-
lution should not incur a significant processing overhead for the more resource-
constrained device, as this would lead to greater power requirements and quicker
battery drain, thereby defeating the purpose of BLE.

4 Devising a Solution Strategy

The requirements we have described in §3.2 and §3.3 are necessary for a secure
and utilitarian solution to the unauthorised data access problem. However, the



6 P. Sivakumaran and J. Blasco

most secure solution is of no value if it will not be applied to a large proportion
of the BLE ecosystem due to lack of technical capability or stakeholder involve-
ment. In this section, we discuss the primary stakeholders in the BLE ecosystem
and describe practical considerations that should be taken into account when
proposing a solution. From this, we determine the most suitable solution strat-
egy to ensure maximum coverage.

4.1 Stakeholders within BLE

There are five primary stakeholders within the BLE ecosystem:

1. The Bluetooth SIG defines and maintains the Bluetooth specification, as well
as BLE services and profiles (such as the Glucose Profile mentioned in §2).

2. Chipset vendors produce BLE-enabled chipsets, which are then used in plat-
forms and peripherals. Chipset developers may also provide BLE stacks for
their products, to enable developers to create BLE end products quickly and
easily. Examples include Qualcomm, NXP, Nordic Semiconductor, Texas In-
struments, STMicroelectronics, etc.

3. Platform vendors develop and maintain BLE-enabled platforms, typically
supporting multiple applications. Prominent examples are Android, iOS/Mac
OS, Windows and Linux.

4. Developers manufacture BLE-enabled end products (e.g., fitness trackers,
medical monitoring devices, eScooters, smart locks). They normally also de-
velop companion apps (that typically run on multi-app platforms) to inter-
face with their products.

5. Users are the ultimate consumers for BLE-enabled products and services.

Users are only considered in terms of the impact of the vulnerability and the
ease of applying a solution. Users are at most expected to update their devices’
operating system or firmware and provide explicit authorisation to applications.
We do not expect users to implement any part of a solution. We therefore confine
the discussion on implementation to the first four entities.

4.2 Practical Considerations

When a BLE security solution is proposed, the likelihood of it being implemented
depends on a number of factors. In this section, we analyse those factors in terms
of the involved stakeholders.

Number of entities. The likelihood of a solution being implemented depends
in part on the number of entities that are required to implement it. The smaller
the number, the easier it is to communicate the solution to them and the greater
the reach of the solution. When considering BLE stakeholders in terms of num-
bers, the SIG is a single entity (albeit made up of a large number of members).
This makes it a single point of communication, from which the solution will
trickle down to implementing entities (platform vendors, chipset vendors and



Application-Level Access Control for Bluetooth Low Energy 7

developers). There are a limited number of platform vendors, and the four most
prominent platforms (Android, Windows, iOS, and Mac OS) account for over
95% of the worldwide OS market share [27]. BLE chipset vendors are more nu-
merous than platform vendors, but not by a large margin (15-20 vendors [16]).
Developers, on the other hand, are multitudinous (several hundreds [7]); it would
therefore be very difficult to communicate a solution to all possible developers.

Stakeholder participation. Not all stakeholders respond satisfactorily when
they are made aware of a vulnerability. The security behaviour of a stakeholder
tends to be associated with the prominence of the stakeholder (in terms of brand
value, which may act as an incentive to adopt strong security practices), as well
as the availability of organisational support, knowledge and resources [5,11,15].
The SIG and most platform/chipset vendors have clear, mature processes in
place for vulnerability reporting, assessment and mitigation, whereas many de-
velopers may not even respond when informed of issues [20]. Further, in interde-
pendent ecosystems such as BLE, where platforms and chipsets implement the
specification, and developers create end-products on top of the platforms and
chipsets, there is a certain degree of “responsibility relaying”. That is, each stake-
holder presumes that the responsibility for implementing the solution belongs
to another stakeholder. This phenomenon of “passing the buck” is prevalent
within IT security, with responsibility being transferred down the supply chain
or to other stakeholders [21,24]. In the case of BLE, we postulate that only a
specification-level change will induce most of the remaining stakeholders within
the BLE ecosystem to incorporate a solution; the solution would have to be
implemented in order to claim conformance with the specification.

Availability of update mechanism. Stakeholder participation, as described
in preceding sections, is key to solution implementation, but equally so is the
availability of an actual mechanism for performing the implementation. In the
case of the Bluetooth specification, all updates are to a document, which can
be updated in a straightforward manner. The solution must thereafter be imple-
mented by the remaining stakeholders. Platform devices, such as mobile phones
and computers, have fairly robust update mechanisms. Therefore, a solution
implementation can be easily rolled out on these devices. Most modern BLE
chipsets support over-the-air (OTA) firmware updates, enabling updates to ap-
plications and sometimes also to the BLE stack. However, many IoT devices do
not incorporate such update mechanisms [30], which means that a large propor-
tion of existing BLE peripherals cannot be modified.

4.3 Discussion

Based on the large number of BLE end-product developers, the lower likelihood
of developer participation, and the lack of firmware update mechanisms in many
BLE peripherals, we reach the conclusion that a security solution that does not



8 P. Sivakumaran and J. Blasco

require involvement from end-product developers is more likely to actually be im-
plemented. We also observe that, because a single platform device normally com-
municates with multiple peripherals, an asymmetric solution involving changes
to only the platforms (which are far fewer in number) will be an effort-efficient
way to mitigate the unauthorised data access vulnerability for a larger proportion
of the BLE ecosystem. Further, according to §4.2, a specification-level change
is more likely to prompt changes to platform devices than individual communi-
cations with platform vendors. In addition, a specification-level change ensures
security by default even if new BLE-enabled multi-app platforms are introduced
in the future (without the need for communicating the solution to each new
platform vendor individually).

5 Proposed Solution

In accordance with our analysis in §4, our proposed solution involves changes
to the BLE stack and primarily involves modifications to multi-application plat-
forms. Our solution also requires minor changes to the peripheral which, however,
can be avoided while still retaining the expected outcome (see §7).

Our solution introduces three new BLE components/properties:

1. ATT Access Database (AAD): A database for storing application access
permissions.

2. ATT Access Manager (AAM): A layer within the BLE stack, responsible
for performing the main access control functions.

3. Device/Platform Mode: A property for a BLE system, which controls
the behaviour of a BLE device with respect to the new functionality.

§5.1 to §5.3 describe the purpose and, if relevant, the functionality of each of
these elements in detail. §5.4 discusses concerns relating to user authorisation,
while §5.5 describes access revocation.

5.1 The ATT Access Database (AAD)

The AAD stores per-device (i.e., BLE peer), per-application access records, as
authorised by the user, for all applications that have made a GATT request for
a BLE peer device, and for all such BLE peer devices connected to the platform.
An access record has three components:

1. AppID: A unique identifier for the application that has made a GATT re-
quest to the platform. This must be assigned by the platform. It should not
be possible for the application to manipulate its AppID.

2. DeviceID: A unique identifier for the BLE peer, e.g., the hardware address.
3. Permission: A value indicating whether access for an app (identified by Ap-

pID) to a BLE device (identified by DeviceID) is Allowed or DenyListed.

By default, records do not exist for an application until the application makes
a GATT request. The first time a record is added to the AAD for an application-
device pair, the associated permission will be as selected by the user. This is
described in detail in §5.2.



Application-Level Access Control for Bluetooth Low Energy 9

Positioning of the AAD. Similar to the Security Database used within the
existing design of BLE, the AAD does not feature within our modified BLE
stack, but must be implemented by the platform in order for the BLE system
to be operational. The AAD only communicates with the AAM. Therefore, the
functionality of the AAD can also be subsumed into the AAM.

Access by applications. The AAD must not be accessible to higher layer
applications. It should not be possible for an application to query its AAD
permissions or to add itself to the AAD, as that would defeat the access control
mechanisms that are in place.

5.2 The ATT Access Manager (AAM)

We introduce the AAM as a new layer within the BLE Host sub-system. It serves
as an access control mechanism for GATT requests. For this reason, it is logically
positioned between GATT and the application layer. This position enables it to
intercept and arbitrate all GATT requests while also not unduly interfering with
applications or lower stack layers.

Basic workflow. Figure 1 depicts the overall workflow when a GATT request
is received from an application. When an application makes a GATT request,
the platform passes the AAM a 3-tuple, consisting of the GATT request, the
DeviceID corresponding to the BLE peer, and the AppID representing the re-
questing application. The DeviceID and AppID are assigned by the underlying
platform (as described in §5.1).

The AAM separates out the three elements and queries the AAD for the
DeviceID/AppID combination. The following outcomes are possible:

– An entry exists within the AAD for the AppID against the given DeviceID:
The AAD forwards the corresponding permission value to the AAM.
• Stored permission is DenyListed : This indicates that the user has

expressly denied the application from accessing data on the specific BLE
peer. The AAM indicates the deny-listed status to the platform, which
should notify the requesting application that the request has failed and
cannot succeed even after multiple tries.

• Stored permission is Allowed : The AAM forwards the GATT request
to ATT/GATT, receives the response, and forwards it to the platform.

– No record exists with the AAD for an AppID-DeviceID pair: This is sig-
nalled to the AAM, which in turn notifies the underlying platform that user
authorisation is required. The user should be presented with options to allow
or deny the application to access data from the BLE peer.

In this manner, only applications that are explicitly authorised by the user
will be able to access data from the BLE peer, and because permissions are
defined per-peer and per-application, the user has complete control over exactly
which BLE devices each application can access.



10 P. Sivakumaran and J. Blasco

PermissionCheck

(AppID,

DeviceID)

Pla�orm AAM AAD GATT

Append

AppID,

DeviceID

DenyList

(AppID,

DeviceID)

Extract

Elements

AAMCheck

(GATTReq, 

AppID,

DeviceID)

Inform

Pla�orm

Request

User Auth

for

Device+App

UserAuth

Reqd

(AppID,

DeviceID)

Result=

DenyList?

Result=

Allowed?

Inform

App

GATTReq

from App

ReqFailed

(GATTReq)

Request

ID Check
Process

Request

Permission

or null
Yes

Process

Request
GATTReq

No

No

Yes

AppID=

null?

No

Yes GATTReq

Pass

Permission

to AAM

Update

AAD

Process 

Request

AddRecord

(AppID,

DeviceID,

Permission)

Forward

Response
Forward

to App

GATTResp

to App

GATTResp GATTResp

AAMAdd

(AppID,

DeviceID,

Permission)

Fig. 1: Proposed workflow for GATT requests. Light grey areas are part of the
BLE stack. Dark grey areas are platform/app components external to the stack.

Note also that, in this design, the functionality of GATT and other exist-
ing BLE stack components do not change. Therefore, changes to the stack are
minimal. Further, the AAM only processes GATT requests; it forwards GATT
responses as received to higher layers.

Null AppIDs. Upon receiving a null AppID, the AAM will forward the GATT
request to ATT/GATT without any further checks. The AAM can only be sent
null AppIDs if the underlying platform hosts a single application (see §5.3).



Application-Level Access Control for Bluetooth Low Energy 11

5.3 Device Mode

We define two modes, “Single-App” and “Multi-App”, based on the application
hosting configuration of the platform:

A Single-App device is a BLE-compatible device that hosts only one applica-
tion. A Multi-App device is a BLE-compatible device that may host more than
one application.

Examples of Single-App devices are fitness trackers, glucose monitors, door
locks and insulin pumps. These devices are resource-constrained and their firmware
generally contains only one set of application code. Devices such as mobile phones
and personal computers, on which many applications run, would fall under the
Multi-App category. The Device Mode is assigned to a device at the time of
manufacture and cannot be changed during operation.

Note that the terms “Single-App device” and “Multi-App device” do not
refer to how many applications a BLE-enabled device can interface with, but
rather how many applications a BLE-enabled device hosts.

A Single-App device functions almost exactly as BLE does today. The AppID
is set to null; the AAM simply passes through requests it receives from higher
layers to GATT, without performing any further checks; the AAD is dormant.
It is important to note that the AppID can only be null for Single-App devices.

A Multi-App device incorporates the complete functionality of the AAM, has
a functional AAD, and behaves as described in the preceding sections. Because
Multi-App devices tend to have greater storage and processing capabilities, we
foresee that these changes will not be overly burdensome.

5.4 Obtaining User Authorisation

The mechanism of obtaining user authorisation will depend on the implement-
ing platform. However, the requirement is that the mechanism must be explic-
itly visible to the user. We do not foresee that this will present a problem, as
authorisation is only required on Multi-App platforms (such as mobile phones
and laptops), which typically have fully-fledged input-output capabilities, unlike
some resource-constrained Single-App platforms.

5.5 Access Revocation

It should always be possible for a user to revoke the access they have granted to
an app, on a per-device basis. Similarly, it should be possible for a user to remove
the DenyListed state for an application-device pair. This could be achieved in a
similar manner to privacy controls on modern mobile and computer operating
systems, where access to system resources are controlled on a per-application
basis. Upon access revocation or state change, a command must be sent to the
AAM, to notify the AAD to update the relevant record.



12 P. Sivakumaran and J. Blasco

6 Requirements Analysis

In this section, we evaluate our proposed solution design against the requirements
defined in §3.

SecRQ1: Prevention of unauthorised access to BLE data. The AAM
intercepts and processes all GATT requests from all applications on the platform.
As long as the assumptions stated in §3.1 hold, no application will be able to
circumvent the AAM checks and covertly access data from BLE peer devices.

SecRQ2: Per-device access control. AAM checks are performed per-app,
per-device. An app that has been authorised to access data from one BLE device
will fail AAM checks if it has not been granted access to a different BLE device.

SecRQ3: Access revocation. Explicit mechanisms exist within the AAM (as
discussed in §5.5) to revoke access for any application that has previously been
granted GATT access to a BLE device.

SysRQ1: Protection by default. Because our solution involves the modifi-
cation of the BLE specification itself (rather than of a single device, platform or
application), every platform that is qualified against this design would incorpo-
rate the GATT access control mechanism, ensuring protection by default.

SysRQ2: Backward compatibility. All new functionality in our design occurs
locally, within a single device. The functionality of GATT and lower layers of the
BLE stack operate as they have previously, and interface with BLE peers with
no changes. Therefore, a device that implements this solution will be backward
compatible with all existing BLE systems. We demonstrate this with our POC in
§8, where a modified Android stack operates with an unmodified BLE peripheral.
The changes also do not affect the existing Bluetooth services or profiles.

SysRQ3: Minimal overhead for resource-constrained devices. The pro-
cessing described in §5.2 applies to Multi-App devices such as mobile phones,
which are expected to have reasonably powerful operating systems and fewer
restrictions in terms of battery usage. Most BLE peripherals have limited stor-
age and do not support hosting multiple apps. Therefore, such devices will be
defined as Single-App, and will be spared most of the processing overhead (§5.3).

7 Additional Benefits

In this section, we describe advantages of our proposed solution, in addition to
those implied by the fulfilment of the requirements.



Application-Level Access Control for Bluetooth Low Energy 13

No changes to existing BLE stack layers. In our solution, a single new
layer is added to the stack, and it is within this layer that the bulk of the access
control behaviour is implemented. No modifications are required for any of the
existing BLE stack layers, including the ATT/GATT layer, which is the only
core layer that interfaces with the AAM (i.e., the requests received by GATT
with the proposed new stack will be exactly as they are at present). This makes it
easier for the Multi-App platform to implement the changes in a modular fashion
(assuming the existing stack has also been developed in a similar manner).

No changes to applications. Our proposed solution requires no interaction
between an application and the AAM. This means that applications that issue
GATT requests will not require any changes, apart from possibly to handle a
new error status. This is a significant advantage, as there are several thousand
mobile applications with BLE capabilities in existence today [25,32], and mak-
ing changes to all of them would be extremely challenging, as it would require
cooperation from a large number of developers.

Equal protection for all services. A BLE device may implement services
defined by the Bluetooth SIG, but may also implement its own custom services.
As with the example provided in §2, most services and profiles defined by the
SIG, including those that read user health data such as heart rate or glucose
measurements, do not specify higher-layer protection as a security requirement.
With our solution, protection is applied to both types of services, even if SIG-
defined services do not specify authorisation permissions.

Protection even in the absence of pairing. Many BLE peripherals tend not
to have sufficient input-output capabilities, and therefore either implement weak
pairing or no pairing at all [26]. Our solution is separate from and at a higher
layer to possible link layer protection mechanisms such as pairing. Any GATT
request from an application has to first pass through the AAM before it can
be forwarded via the link layer to the BLE peer, which means that protection
is applied at a much earlier step. This means that the proposed new stack will
protect data on a BLE peer from access by an unauthorised application on a
Multi-App platform even if the peripheral does not specify a requirement for
pairing. Of course, if the peripheral does not require pairing, then its data can
be eavesdropped over the wireless interface; it can also be accessed by a different
unauthorised device. However, that is outside the scope of this work. Our work
focuses on protecting data from unauthorised access at the application layer.

Most changes are to mature platforms. While a specification change would
typically require a change to all devices that implement the BLE stack, the way in
which the proposed change has been designed allows for the system to function
even without any changes to existing peripherals. The only entities that will
require changes are Multi-App platforms such as mobile or personal computer



14 P. Sivakumaran and J. Blasco

operating systems. These platforms tend to have a robust update mechanism in
place already, which is familiar to users. This ensures greater likelihood of the
changes actually being installed on end user devices.

Potential for fine-grained access control. Our current solution design en-
ables an application to either access all data on a peripheral or none. This
can be extended to enable fine-grained access control by access type (i.e., reads
or writes) or even on a per-characteristic level (we note, however, that per-
characteristic access control is inadvisable in most cases, as it would place too
much decision burden on users who may not be aware of the purpose of each
characteristic).

8 Proof of Concept

APPLICATION FRAMEWORK
/frameworks/base/

BluetoothDevice.java BluetoothAam.java

IBluetoothAam.aidl

BLUETOOTH PROCESS
/packages/apps/Bluetooth/

AamService.java

com_android_bluetooth_btservice_AamService.cpp

HARDWARE ABSTRACTION LAYER
/hardware/libhardware/include/hardware/

bt_aam.h

BT STACK
/system/bt/

b�f_aam.c bta_aam_api.c aam_api.c

BluetoothManagerService.java

btu_init.c

Fig. 2: Main changes made to Android ar-
chitecture for POC. Utility functions not
shown. Solid & dashed lines denote new
& modified components, respectively.

In order to demonstrate the viabil-
ity of our proposed solution, we have
implemented a Proof-of-Concept on
the Android-x86 platform.3

In this section, we discuss implemen-
tation details, describe the test set-
up, and evaluate the POC in terms
of development effort, performance
overheads and user experience.

8.1 Implementation Details

We selected the Android platform
for our POC due to its open-source
nature, large installation base and
potential familiarity to readers. We
used the Android-x864 code base, to
be able to implement and test our
solution on a virtual machine, with-
out the need for expensive device in-
stallations.5 The modified Android-
x86 was built on a VM running
Ubuntu 18.04.3 LTS with 128 GB
RAM (8 GB for heap) and 8 cores.

3 https://github.com/projectbtle/BLE-MultiApp-POC
4 Android-x86 is a port of Android for x86 platforms. It is based on the Android Open

Source Project (AOSP) with some modifications.
5 Android-x86 offers Bluetooth capabilities, which official Android emulators lack.

https://github.com/projectbtle/BLE-MultiApp-POC


Application-Level Access Control for Bluetooth Low Energy 15

Figure 2 depicts the components within the Android-x86 framework that were
modified or added for our proposed solution. Specifically, on Android, a GATT
request (such as those for reading or writing characteristics) can only be issued
after an app has called the connectGatt method. Because of this construct,
and due to the nature of the Android architecture, we select connectGatt as
the entry point for the AAM checks. We use the device’s hardware address as
the DeviceID and extract the Android app’s application ID (which uniquely
identifies an app on the Android platform [2]) to use as the AppID.

Fig. 3: User authorisation dialog with explicit
reference to app and BLE device.

The actual AAM functional-
ity is implemented within the
BT stack. In keeping with
Android’s workflow for other
BLE functionality, we imple-
mented the AAM function-
ality along a path from the
application framework to a
custom AAM “layer” within
the stack, as shown in Fig-
ure 2. Within the AAM layer,
the AAD is implemented as a
linked-list of records, follow-
ing the same structure that is
used natively by Android for
storing pairing credentials.

User authorisation is requested via standard Android dialog boxes. To make
the contents of the dialog box clear and easily understood by the user, the
application name is displayed instead of the application ID. For the device, both
the device name (if available) and the hardware address are displayed, to avoid
ambiguity in situations where more than one device with the same name are
advertising in the vicinity. A sample is depicted in Figure 3. The Allow and Deny

options within the dialog box map to the Allowed and DenyListed permissions
described in §5.1, respectively. We have also implemented a temporary access
option AuthReqd, which is displayed as Allow Once in the dialog box.

8.2 POC Tests

To test our POC, we replicate the attack scenario described in [25]. The at-
tack demonstrates covert access of data from a connected BLE device by an
unauthorised app. We utilise four main components:

1. VMWare Workstation 14 Player on a Windows 10 laptop, with a CSR
adapter, for running the original and modified Android-x86 builds.

2. Nordic nRF51 DK, in the role of a glucose meter (“GlucoMeter”). No pairing-
protected characteristics.

3. Android app, in the role of a glucose monitoring app (“GlucoseApp”).
4. Android app, in the role of a malicious app masquerading as a legitimate

app, e.g., a game, which accesses BLE data covertly (“EvilGameApp”).



16 P. Sivakumaran and J. Blasco

USER GA EA Android-x86 GM

Launch GlucoseApp

Loca�on Perm.

Granted

Find Device Perform BLE Scan
Scan

<Device List><Device List>

Select Device Connect Device Connect

Sync Data connectGa�()

Enum + Read Read Request
<Value><Value>Display Value

Home Screen

Launch EvilGameApp

Play Game getConnectedDevices()

<Device List>

connectGa�()

writeCharacteris�c() Write <Val2>
<success>

(a) Current scenario.

USER GA EA Android-x86 GM

Launch GlucoseApp

Loca�on Perm.

Granted

Find Device Perform BLE Scan
Scan

<Device List><Device List>

Select Device Connect Device Connect

Sync Data connectGa�()

Enum + Read Read Request
<Value><Value>Display Value

Home Screen

Launch EvilGameApp

Play Game getConnectedDevices()

<Device List>

connectGa�()

Authorisa�on Required

Authorisa�on Denied

Authorisa�on Required

Authorisa�on Granted

Connected

Connec�on Failed

(b) With our solution.

Fig. 4: Interaction between User, GlucoseApp (GA), EvilGameApp (EA), Multi-
App platform (Android-x86) and BLE GlucoMeter (GM). Items in italics are
interactions between EA and Android-x86 that occur without user awareness.
Items in bold are new user interaction elements.

We deploy a VM with the original Android-x86 build and perform the follow-
ing functions in order: (i) Launch GlucoseApp. (ii) Scan for BLE devices. (iii)
Connect to the GATT server on the “GlucoMeter” and read a characteristic.
This will read a dummy value of 0x12345678. (iv) Launch EvilGameApp (which
covertly identifies the existing connection to the GlucoMeter, calls connectGatt
to it and writes the same characteristic). Figure 4a depicts the interactions be-
tween five main entities (the user, GlucoseApp, EvilGameApp, the Multi-App
platform (i.e., Android-x86), and the BLE device) when going through the above
test steps in the absence of any protection mechanism. We then repeat the tests
using the modified Android-x86 build. Figure 4b illustrates the interaction be-
tween the five entities when our controls have been implemented. The two figures
demonstrate that unauthorised data access is prevented with our solution be-
cause the covert data access attempt is brought to the attention of the user and
defeated, i.e., protection is achieved due to explicit user awareness.

Testing with pairing-protected data. We additionally modified the “Glu-
coMeter” to require pairing prior to data access. Re-running the tests again, we
found that our controls worked in that scenario as well, as expected.



Application-Level Access Control for Bluetooth Low Energy 17

Testing with real-world devices and applications. We verified the func-
tionality of the POC implementation on real-world devices and apps by testing
two popular fitness trackers, the Mi Band 2 and ID107HR/VeryFit, against the
modified Android-x86. For this, we installed the corresponding applications on
the POC platform and connected to the devices. The solution worked without
the need for any modifications to the fitness trackers or to their apps.

8.3 Evaluation

Development effort. The entire set of modifications in our POC, including
substantial debugging information, required approximately 1500 new lines of
code. This demonstrates that the solution is viable.

Performance overheads. Analysing Android debug logs, we identified that
performing an AAM access check took at most 25 milliseconds. This is well
within the 100-millisecond instantaneous reaction perception limit [19,12]. We
found while interacting with the system that this amount of time is indiscernible
(from our point of view as a user).

User experience and comprehension. The user is shown a dialog when an
application is first launched and attempts to access data from a BLE device. Once
that dialog has been responded to, subsequent access attempts don’t require
user interaction. Therefore, it is the impact of the first dialog that needs to be
analysed. Due to the prevailing Covid-19 situation, we were unable to conduct
in-person tests. We therefore present here a theoretical analysis of the impact
on user experience and comprehension.

If a malicious app professes to be benign but covertly accesses BLE data, then
it may limit the number of permissions that it requests in order to trick the user
into believing that it is harmless. In such a scenario, the presentation of a system
dialog could serve to call the user’s attention to the fact that covert data access
is being attempted. Previous studies on user authorisation mechanisms [17],
such as the ones used in the Android permission system, suggest that using a
system dialog the first time a resource is accessed provides the optimal point
for user decision making. Our proposal effectively achieves this by raising the
authorisation dialog the first time a BLE resource is accessed. If the access to
that resource (a BLE peripheral in our case) is malicious, the user won’t see how
the app functionality is related to the device access and will therefore deny it.
Of course, if the malicious app portrays itself as a BLE accessory app, it is more
likely for the user to allow access. Identifying malicious behaviour after access
to the BLE peripheral has been granted (e.g., leakage of BLE data once it has
been read from a device) is outside the current scope and is left as future work.

9 Limitations

Use of external sources of information. The proposed solution requires that
the implementing platform supply unique application identifiers to a component



18 P. Sivakumaran and J. Blasco

within the BLE stack. This in effect removes the self-contained aspect of the
stack by introducing an element external to the stack.

Reliance on honesty of platform. While the proposed solution enables the
user to grant permissions on a per-device, per-app basis, the fact that the access
control checks are entirely performed by the Multi-App platform implies that
there is implicit reliance on the integrity and honesty of the platform. That is,
there is an underlying assumption that the Multi-App platform will apply access
control checks to all applications in an unbiased manner. However, it may be
the case that a Multi-App platform which ships with its own set of apps may
automatically authorise those apps to access any BLE peer, and only apply access
control checks to third-party apps. This would then remove some of the visibility
and control from the user. Circumventing such an issue would require a complex
protocol between the platform and peripheral, and is outside the scope of this
paper. For our work, we make the assumption of an honest and fair platform.

Complexities in desktop/laptop environments. The solution we have pro-
posed is straightforward to implement on mobile operating systems, where the
level of user customisation, particularly regarding the BLE stack, is minimal.
However, with operating systems such as Windows and Linux, there is a possi-
bility that an application might use a BLE stack that is not provided by the OS.
For example, it is possible on a Windows machine to utilise an external BLE
adapter, instead of the system-provided Bluetooth capabilities. This is done
manually, with additional hardware, and requires that the system Bluetooth be
turned off. While such a setup is more likely to exist in testing scenarios than in
normal user systems, it is still a consideration that should be factored in when
implementing the solution.

10 Related Work

Various aspects regarding the security and privacy of Bluetooth Low Energy
have been studied over the years. The BLE pairing process has come under
specific scrutiny, with passive eavesdropping [10,23], authentication bypass [22],
key entropy downgrade [3] and link encryption downgrade vulnerabilities [31,29]
explored over time. Man-in-the-Middle/spoofing attacks have been described
in [14,29]. Privacy concerns with BLE have also been widely studied [9,13,8].

The works most closely aligned with ours are [25] (which is our own work,
where we first describe the unauthorised data access vulnerability for BLE)
and [18]. In [18], the authors described unauthorised data access for Bluetooth
BR/EDR (i.e., “Classic”) devices by any Android app with Bluetooth permis-
sions. They proposed an Android OS-level protection mechanism via bonding
policies. Their solution assumes that the first app that pairs to a Bluetooth de-
vice is the authorised app and automatically creates a policy. Our solution makes
no such assumption, particularly since, in the BLE case, the peripheral device



Application-Level Access Control for Bluetooth Low Energy 19

may not require pairing at all. Further, the user may desire the use of a secondary
application with additional features. Our solution instead explicitly informs the
user of any application that makes a GATT request to a connected BLE device.
This ensures that the user is aware of and can make decisions regarding whether
or not to allow access. We also present our solution as a specification-level change,
which then affords protection by default for the entire BLE ecosystem.

11 Conclusion

We have presented a modified Bluetooth Low Energy stack to solve the unau-
thorised data access vulnerability on multi-app platforms. Our solution fulfils
stringent security and system requirements, and takes into account practical
considerations in its design. It ensures protection by default, while maintaining
backward compatibility with existing systems. No changes are required to apps
or resource-constrained BLE peripherals, nor are changes required to existing
stack layers. We have also implemented a proof-of-concept on the Android-x86
platform to illustrate our solution, and have demonstrated that the solution
prevents unauthorised data access via explicit user awareness and authorisation.

References

1. Android: Bluetooth Low Energy overview (2020), https://developer.android.
com/guide/topics/connectivity/bluetooth-le. [Accessed: 06-Feb-2021]

2. Android: Set the application ID (2020), https://developer.android.com/

studio/build/application-id. [Accessed: 20-Oct-2020]
3. Antonioli, D., Tippenhauer, N.O., Rasmussen, K.: Low entropy key negotiation

attacks on Bluetooth and Bluetooth Low Energy. IACR Cryptology ePrint Archive
(2019)

4. Apple: If an app would like to use Bluetooth on your device (2019), https://

support.apple.com/en-us/HT210578. [Accessed: 20-Oct-2020]
5. Assal, H., Chiasson, S.: ‘think secure from the beginning’ a survey with software

developers. In: Proceedings of the 2019 CHI conference on human factors in com-
puting systems. pp. 1–13 (2019)

6. Bluetooth Special Interest Group: 2020 Bluetooth market update (2020), https:
//www.bluetooth.com/bluetooth-resources/2020-bmu [Accessed 13-May-2020]

7. Bluetooth Special Interest Group: LaunchStudio (2021), https://launchstudio.
bluetooth.com/Listings/Search [Accessed 08-Feb-2021]

8. Celosia, G., Cunche, M.: Fingerprinting Bluetooth-Low-Energy devices based on
the Generic Attribute profile. In: Proceedings of the 2nd International ACM Work-
shop on Security and Privacy for the Internet-of-Things. pp. 24–31. ACM (2019)

9. Das, A.K., Pathak, P.H., Chuah, C.N., Mohapatra, P.: Uncovering privacy leakage
in BLE network traffic of wearable fitness trackers. In: Proceedings of the 17th
International Workshop on Mobile Computing Systems and Applications (2016)

10. Gomez, C., Oller, J., Paradells, J.: Overview and evaluation of Bluetooth Low
Energy: An emerging low-power wireless technology. Sensors (2012)

11. Halderman, J.A.: To strengthen security, change developers’ incentives. IEEE Se-
curity & Privacy (2010)

https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://developer.android.com/studio/build/application-id
https://developer.android.com/studio/build/application-id
https://support.apple.com/en-us/HT210578
https://support.apple.com/en-us/HT210578
https://www.bluetooth.com/bluetooth-resources/2020-bmu
https://www.bluetooth.com/bluetooth-resources/2020-bmu
https://launchstudio.bluetooth.com/Listings/Search
https://launchstudio.bluetooth.com/Listings/Search


20 P. Sivakumaran and J. Blasco

12. Hogan, L.C.: Performance is user experience (2014), online. https://

designingforperformance.com/performance-is-ux [Accessed: 15 Feb 2021]
13. Issoufaly, T., Tournoux, P.U.: BLEB: Bluetooth Low Energy Botnet for large scale

individual tracking. In: 2017 1st International Conference on Next Generation
Computing Applications (NextComp). pp. 115–120. IEEE (2017)

14. Jasek, S.: Gattacking Bluetooth Smart devices. In: Black Hat USA (2016)
15. van der Linden, D., Anthonysamy, P., Nuseibeh, B., Tun, T.T., Petre, M., Levine,

M., Towse, J., Rashid, A.: Schrödinger’s security: opening the box on app devel-
opers’ security rationale. In: 2020 IEEE/ACM 42nd International Conference on
Software Engineering (2020)

16. Markets and Markets: IoT chip market (2021), https://www.marketsandmarkets.
com/Market-Reports/iot-chip-market-236473142.html [Accessed 08-Feb-2021]

17. Micinski, K., Votipka, D., Stevens, R., Kofinas, N., Mazurek, M.L., Foster, J.S.:
User interactions and permission use on Android. In: Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. pp. 362–373 (2017)

18. Naveed, M., Zhou, X., Demetriou, S., Wang, X., Gunter, C.A.: Inside job: Under-
standing and mitigating the threat of external device mis-binding on Android. In:
21st Annual Network and Distributed System Security Symposium (2014)

19. Nielsen, J.: Response times: The 3 important limits (1993), https://www.nngroup.
com/articles/response-times-3-important-limits [Accessed: 15 Feb 2021]

20. O’Donnell, L.: Consumers urged to junk insecure IoT devices, https:

//threatpost.com/consumers-urged-to-junk-insecure-iot-devices/145800.
[Accessed: 12-Feb-2021]

21. Ramachandran, R.: IoT connected healthcare devices: Challenges in cybersecurity
and the way forward (2020)

22. Rosa, T.: Bypassing passkey authentication in Bluetooth Low Energy. IACR Cryp-
tology ePrint Archive (2013)

23. Ryan, M.: Bluetooth: With low energy comes low security. In: 7th USENIX Work-
shop on Offensive Technologies (2013)

24. Schwartau, W.: Let’s end pass-the-buck security (2004)
25. Sivakumaran, P., Blasco, J.: A study of the feasibility of co-located app attacks

against BLE and a large-scale analysis of the current application-layer security
landscape. In: 28th USENIX Security Symposium. pp. 1–18 (2019)

26. Sivakumaran, P., Blasco Alis, J.: A low energy profile: Analysing characteristic
security on BLE peripherals. In: Proceedings of the Eighth ACM Conference on
Data and Application Security and Privacy. pp. 152–154. ACM (2018)

27. statcounter: Operating system market share worldwide, https://gs.

statcounter.com/os-market-share. [Accessed: 06-Feb-2021]
28. Woolley, M.: Bluetooth 5 (2019), online. https://www.bluetooth.com/wp-

content/uploads/2019/03/Bluetooth_5-FINAL.pdf [Accessed: 31 Aug 2020]
29. Wu, J., Nan, Y., Kumar, V., Tian, D.J., Bianchi, A., Payer, M., Xu, D.: BLESA:

Spoofing attacks against reconnections in Bluetooth Low Energy. In: 14th USENIX
Workshop on Offensive Technologies (2020)

30. Zandberg, K., Schleiser, K., Acosta, F., Tschofenig, H., Baccelli, E.: Secure
firmware updates for constrained IoT devices using open standards: A reality check.
IEEE Access (2019)

31. Zhang, Y., Weng, J., Dey, R., Jin, Y., Lin, Z., Fu, X.: On the (in) security of
Bluetooth Low Energy one-way Secure Connections Only mode (2019)

32. Zuo, C., Wen, H., Lin, Z., Zhang, Y.: Automatic fingerprinting of vulnerable BLE
IoT devices with static UUIDs from mobile apps. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security (2019)

https://designingforperformance.com/performance-is-ux
https://designingforperformance.com/performance-is-ux
https://www.marketsandmarkets.com/Market-Reports/iot-chip-market-236473142.html
https://www.marketsandmarkets.com/Market-Reports/iot-chip-market-236473142.html
https://www.nngroup.com/articles/response-times-3-important-limits
https://www.nngroup.com/articles/response-times-3-important-limits
https://threatpost.com/consumers-urged-to-junk-insecure-iot-devices/145800
https://threatpost.com/consumers-urged-to-junk-insecure-iot-devices/145800
https://gs.statcounter.com/os-market-share
https://gs.statcounter.com/os-market-share
https://www.bluetooth.com/wp-content/uploads/2019/03/Bluetooth_5-FINAL.pdf
https://www.bluetooth.com/wp-content/uploads/2019/03/Bluetooth_5-FINAL.pdf

	Who's Accessing My Data? Application-Level Access Control for Bluetooth Low Energy

