
A Study of the Feasibility of Co-located App Attacks against BLE and a
Large-Scale Analysis of the Current Application-Layer Security Landscape

Pallavi Sivakumaran
Information Security Group

Royal Holloway University of London
Email: pallavi.sivakumaran.2012@rhul.ac.uk

Jorge Blasco
Information Security Group

Royal Holloway University of London
Email: jorge.blascoalis@rhul.ac.uk

Abstract

Bluetooth Low Energy (BLE) is a fast-growing wireless
technology with a large number of potential use cases, par-
ticularly in the IoT domain. Increasingly, these use cases
require the storage of sensitive user data or critical device
controls on the BLE device, as well as the access of this data
by an augmentative mobile application. Uncontrolled access
to such data could violate user privacy, cause a device to mal-
function, or even endanger lives. The BLE standard provides
security mechanisms such as pairing and bonding to protect
sensitive data such that only authenticated devices can ac-
cess it. In this paper we show how unauthorized co-located
Android applications can access pairing-protected BLE data,
without the user’s knowledge. We discuss mitigation strate-
gies in terms of the various stakeholders involved in this
ecosystem, and argue that at present, the only possible option
for securing BLE data is for BLE developers to implement
remedial measures in the form of application-layer security
between the BLE device and the Android application. We
introduce BLECryptracer, a tool for identifying the presence
of such application-layer security, and present the results
of a large-scale static analysis over 18,900+ BLE-enabled
Android applications. Our findings indicate that over 45%
of these applications do not implement measures to protect
BLE data, and that cryptography is sometimes applied incor-
rectly in those that do. This implies that a potentially large
number of corresponding BLE peripheral devices are vulner-
able to unauthorized data access.

1 Introduction

Bluetooth is a well-known technology standard for wireless
data transfer, currently deployed in billions of devices world-
wide [37]. A more recent addition to the Bluetooth standard
is Bluetooth Low Energy (BLE), which differs from Classic
Bluetooth in that it incorporates a simplified version of the
Bluetooth stack and targets low-energy, low-cost devices.

Its focus on resource-constrained devices has made BLE

highly suited for IoT applications [19], including personal
health/fitness monitoring [23], asset tracking [9], vehicular
management [14], and home automation [28]. Most of these
use cases augment the functionality of the BLE device with
a mobile application. This application may need to read or
write sensitive or critical data on the BLE device (for ex-
ample, glucose measurement values stored by a continuous
glucose meter, or a field that controls a door’s locking mech-
anism in a smart home security system). To ensure privacy
and security/safety, measures should be taken to protect such
data from being accessed by unauthorized entities.

The Bluetooth specification provides means for restrict-
ing access to BLE data via pairing and bonding, which are
mechanisms for establishing an authenticated transport be-
tween two communicating devices. However, when multiple
applications reside on a single host, as is the case with mo-
bile devices, there is potential for a malicious application to
abuse a trusted relationship between the host and the device
that was initiated by an authorized application [32].

In this work, we show how a malicious application could
take advantage of the BLE communication model on An-
droid to read and write pairing-protected data on a BLE de-
vice without the user’s knowledge. We also show that these
unauthorized applications may be able to do so while re-
questing minimal permissions, thereby making them appear
less invasive than even an authorized application.

We discuss various strategies, in terms of the different
stakeholders involved, that can be used to secure BLE data
against such unauthorized access. We argue that in the cur-
rent landscape, it is up to the BLE device/application devel-
opers to implement application-layer security to protect the
data on their devices. We perform a large-scale static anal-
ysis of 18,929 BLE-enabled Android applications (filtered
down from an original dataset of over 4.6 million applica-
tions) to determine how many of them currently employ such
protection mechanisms. While the results vary for BLE reads
vs. writes, overall they show that more than 45% of the tested
applications do not provide cryptography-based application-
layer security for BLE data. This number rises to about 70%

1

ar
X

iv
:1

80
8.

03
77

8v
3 

 [
cs

.C
R

] 
 1

6 
Fe

b 
20

19



CENTRAL PERIPHERAL

GATT Client GATT Server

read Request

read Response

Figure 1: GATT communications between a mobile phone
and a BLE-enabled glucometer.

for those applications that are categorized under “Medical”.
This information, when combined with the download counts
for each application, allows us to estimate a lower bound for
the number of BLE devices that may be vulnerable to unau-
thorized data access.

The rest of this paper is structured as follows: Section 2
provides an overview of key BLE concepts, particularly
with regard to data access mechanisms and restrictions. We
demonstrate unauthorized BLE data access in Section 3.
This section also discusses stakeholders and possible mitiga-
tion strategies. Section 4 details our marketplace application
analysis and examines the results. Related work is described
in Section 5, and Section 6 provides our concluding remarks.

2 Background

Two devices that communicate using BLE will operate in an
asymmetric configuration, with the more powerful device,
referred to as the central, taking on most of the resource-
intensive work. The resource-constrained device is termed
the peripheral and performs tasks that are designed to con-
sume fewer resources.

Data Access on BLE Devices

BLE, unlike Classic Bluetooth, can only handle discrete data
known as attributes. Attributes are stored and accessed ac-
cording to rules specified by the Attribute Protocol (ATT)
and the Generic Attribute Profile (GATT), both of which are
defined in the Bluetooth standard. There are different types
of attributes, of which characteristics are the most relevant
for our analysis, as they hold the actual data of interest. Re-
lated characteristics are grouped into services, which are ex-
posed to connected devices [12].

When one BLE-enabled device wants to access attributes
on another BLE device, the device that initiates the exchange
takes on the role of GATT client and the other acts as the
GATT server. In this paper, we focus on the scenario where

the BLE peripheral (e.g., a glucose meter), acts as the server,
and a mobile phone acts as the client, as shown in Figure 1.

BLE Attribute Permissions

Every attribute has associated with it three permissions that
control how it may be accessed: (1) Access permissions de-
fine whether an attribute can be read and/or written. (2) Au-
thentication permissions indicate the level of authentication
and encryption that needs to be applied to the transport be-
tween the two devices before the attribute can be accessed.
(3) Authorization permissions specify whether end-user au-
thorization is required for access.

When a GATT client sends a read or write request for
an attribute to a GATT server, the server will check the
request against the permissions for that attribute, to deter-
mine whether the requested access mechanism is allowed
and whether the client is authenticated and/or authorized,
if required. An attribute is only readable or writable if
its access permissions specify it to be so. In the case of
authentication permissions, if the attribute requires an au-
thenticated or encrypted link before it can be accessed (re-
ferred to as a “pairing-protected” attribute in this paper),
and if such a link is not present when the access request
is made, then the server responds with an Insufficient

Authentication/Encryption message. At this point, the
client can initiate the pairing process to authenticate and en-
crypt the transport. If this process completes successfully,
the server will fulfill subsequent requests made by the client.
This procedure for handling authentication requirements is
well-defined in the Bluetooth specification. Authorization
requirements, on the other hand, are implementation-specific
and largely left up to developers.

Once two devices complete the pairing process, they typ-
ically go through an additional bonding process, during
which long-term keys are established. This prevents the need
for going through the pairing process again if they disconnect
and subsequently reconnect, provided they retain the long-
term keys. Upon re-connection, the link encryption process
will be initiated using the stored keys. Keys normally re-
main on the devices unless the devices are reset or manually
unpaired by the user.

3 BLE Co-Located Application Attacks

In this section, we show how any application on an Android
device can access pairing-protected attributes from a BLE
peripheral, even when the pairing process was initiated by
a different application. We then explore various mitigation
strategies that are available to different stakeholders in the
BLE ecosystem.

These attacks were also explored by Naveed et al. in 2014,
for Classic Bluetooth [32]. We show that the problem re-
mains on newer versions of Android, and also that the situ-

2



ation is worse for BLE, as one of our attacks enables fewer
restrictions for access and requires fewer permissions of the
malicious application than even of the official application.

3.1 Attack Mechanisms

We describe two attacks: the first shows that pairing-
protected data can be accessed by unauthorized applications,
while the second refines the attack and reduces the number
of permissions required by the unauthorized application. We
use two Android applications to describe the attacks: One
application that is expected to be able to connect to the BLE
device and access its data (“OfficialApp”) and a different ap-
plication that should not be able to access pairing-protected
data from the device (“AttackApp”).

We conducted our experiments on an Alcatel Pixi 4 mobile
phone, running Android 6.0 (the most widely-deployed re-
lease [1]), and on a Google Pixel XL, running Android 8.1.0
(the latest stable release), as of 01 Aug 2018.

Attack 1: System-wide Pairing Credentials

This attack demonstrates that the BLE credentials that are
stored on an Android device are implicitly available to all
applications on the device, rather than just the application
that originally triggered the pairing.

When the OfficialApp connects to the BLE device and
attempts to access a pairing-protected characteristic, the re-
sulting exchange will trigger the Android OS into initiating
the pairing and bonding process (as depicted in the upper
block in Figure 2). The resultant keys are associated with
the link between the Android and BLE devices, rather than
between the BLE device and the OfficialApp (which actually
triggered the pairing). Therefore, once bonding completes,
when the AttackApp scans and connects to the BLE device,
the Android OS completes the connection process and au-
tomatically initiates link encryption with the keys that were
generated during the previous bonding process (lower block
in Figure 2). This enables the AttackApp to have the same
level of access to the pairing-protected data on the device as
the OfficialApp, but without the need for initiating pairing.

A key point to note here is that, not only is the unautho-
rized AttackApp able to access potentially sensitive infor-
mation from the BLE device, but also the user is likely to
be unaware of the fact that this data access is taking place,
as there is no indication during link re-encryption and subse-
quent attribute access.

Attack 2: Reuse of Connection

Our second attack exploits the fact that, on Android, a BLE
peripheral can be used concurrently by multiple applica-
tions [33]. In this attack, the AttackApp does not scan for
BLE devices. It instead searches for connected BLE devices

Apps Android OS BLE

startLeScan()

Scan
<device list>

connect()
Create Connection

Connection Complete
onConnect

readCharacteristic() read Request: <protectedChar>

Error: Insufficient Authentication

Pairing, Link Encryption, Bonding

read Request: <protectedChar>

read Response: <value>
onread

getValue()

<value>

close()
Disconnect

OfficialApp

startLeScan()

Scan
<device list>

connect()
Create Connection

Connection Complete

Link Encryption

readCharacteristic() read Request: <protectedChar>

read Response: <value>
onread

getValue()

<value>

AttackApp

Figure 2: Attack 1 - Illustrative message exchange depicting
access of pairing-protected data by unauthorized application.
Note: Dashed lines indicate encrypted traffic.

using the BluetoothManager.getConnectedDevices()

API call, with BluetoothProfile.GATT as the argument.
If the OfficialApp happens to be in communication with the

3



BLE device at the same time, this call will return a list with
a reference to the connected BLE device. The AttackApp is
then able to directly connect to the GATT server and read
and write to the characteristics on it (including those that are
pairing-protected), without the need for creating a new con-
nection to the peripheral. This again is done surreptitiously,
without the user being aware of the data access. An illustra-
tive message flow where the AttackApp writes to a protected
characteristic on the BLE device (which the OfficialApp sub-
sequently reads) has been depicted in Figure 3.

An interesting observation from this attack is a subtle
but relevant impact it has on user awareness, due to the
different permissions that need to be requested by the two
applications. Since both applications access data from a
GATT server, they both require BLUETOOTH permissions. In
this attack scenario, because the OfficialApp scans for the
BLE device before it connects to it, it also needs to re-
quest the BLUETOOTH ADMIN permission. Both BLUETOOTH

and BLUETOOTH ADMIN are “normal” permissions that are
granted automatically by the Android operating system af-
ter installation, without any need for user interaction. How-
ever, due to restrictions imposed from Android version 6.0
onward, the OfficialApp also needs to request LOCATION per-
missions to invoke the BLE scanner without a filter (i.e.,
to scan for all nearby devices instead of a particular de-
vice). These permissions are classed as “dangerous” and will
prompt the system to display a confirmation dialog box the
first time they are required. Because the AttackApp merely
has to query the Android OS for a list of already connected
devices, it does not require these additional permissions.
This makes the AttackApp appear to be less invasive in the
eyes of a user, since it does not request any permission that
involves user privacy. This could play a part in determining
the volume of downloads for a malicious application. For ex-
ample, a malicious application that masquerades as a gaming
application, and which does not request any dangerous per-
missions, may be more likely to be downloaded by end users
as opposed to one that requests location permissions.

3.2 Discussion

In this section we discuss the impact of our findings, com-
pare them with the Classic Bluetooth case, and mention some
attack limitations.

Implications of Attack

In both of our experiments, the AttackApp was able to read
and write pairing-protected data from the BLE device. The
simplest form of attack would then be for a malicious appli-
cation to perform unauthorized reads of personal user data
(as an example) and relay this to a remote server.

We verified the practicability of this attack by testing
a BLE-enabled fitness tracker that implemented the Blue-

Apps Android OS BLE

startLeScan()

Scan
<device list>

connect()
Create Connection

Connection Complete
onConnect

readCharacteristic() read Request: <protectedChar>

Error: Insufficient Authentication

Pairing, Link Encryption, Bonding

read Request: <protectedChar>

read Response: <value>
onread

getValue()

<value>

getConnectedDevices()

<device list>

connectGatt()

onConnect

writeCharacteristic()
write Request:

<protectedChar, value2>

write Response: success
onwrite

AttackApp

readCharacteristic() read Request: <protectedChar>

read Response: <value2>
onread

getValue()

<value2>

OfficialApp

Figure 3: Attack 2 - Illustrative message exchange depicting
the access of pairing-protected data by reusing an existing
connection. Note: Dashed lines indicate encrypted traffic.

tooth Heart Rate Service. The service specification states
that characteristics within this service are only supposed to
be protected by pairing [10]. However, we observed that
the pairing employed by the device appeared to be a non-

4



standard implementation, and also that access to the Heart
Rate Measurement characteristic was “locked” and had to
be “unlocked” by first writing to certain other characteris-
tics on the tracker. Despite this, we found that by deploying
our second attack, our AttackApp was able to obtain Heart
Rate Measurement readings without the need for performing
any “unlocking”. This is because the AttackApp connects
to the GATT server by reusing an existing connection that
was initiated by the official application. The unlocking pro-
cedure would therefore already have been performed for that
connection by the official application. This result shows that
artificially restricting access to data using non-cryptographic
means will not be effective. We notified the device devel-
oper of this issue on 01 Nov 2018, but have not yet received
a response.

It should be noted that the above attack could be used by a
malicious application to target other sensitive health infor-
mation such as ECG, glucose or blood pressure measure-
ments from vulnerable BLE devices, to build up a profile
on a user’s health. Further, Smart Home devices and BLE-
enabled vehicles may hold information on a user’s habits and
lifestyle (e.g., time at home, alcohol consumption, driving
speed), and could be exploited. It may also be possible for a
malicious application to overwrite values on the BLE device,
such that the written data either causes unexpected behavior
on the device, or is read back by the legitimate application,
thereby giving the user an incorrect view of the data on the
peripheral. For example, it may be possible to update the
peripheral’s firmware via GATT writes. If this mechanism
is not suitably protected, then a malicious application could
potentially install malicious firmware onto the BLE device,
as we demonstrate in Section 4.6.

Comparison with Classic Bluetooth

In their experiments with Classic Bluetooth, Naveed et al.
found that an unauthorized Android application would not
be able to obtain data from a Classic Bluetooth device if the
authorized application had already established a socket con-
nection with the device, as only one application can be in
communication with the device at one time. Therefore, a ma-
licious application would either require some side-channel
information in order to determine the correct moment for
data access, or would need to interfere with the existing con-
nection, thereby potentially alerting the user [32]. This limits
the attack window for the malicious application. Our exper-
iments show that this is not the case with BLE communica-
tion channels. With BLE, there are no socket connections
and if the official application has established a connection
with the BLE device, then this connection can be utilized by
any application that is running on the Android device. That
is, a malicious application does not have to wait for the au-
thorized application to disconnect before it can access data.

Attack Limitations

The main limitation for the AttackApp in the case of
the first attack is that it requires the BLUETOOTH and
BLUETOOTH ADMIN permissions in its manifest, and also
needs to explicitly request LOCATION permissions at first
runtime in order to be able to invoke the BLE scanner. This
enables the AttackApp to connect to the BLE device regard-
less of whether or not another application is also connected,
but increases the risk of raising a user’s suspicions.

In the second attack scenario, the obvious limitation for
the AttackApp that requests only the BLUETOOTH permis-
sion is that the application will only be able to access data
from the BLE peripheral when the peripheral is already in a
connection with (another application on) the Android device.
That is, data access will have to be opportunistic. This can
be achieved, for example, by periodically polling for a list of
connected devices.

3.3 Stakeholders, Mitigation Strategies and
Awareness

In this section, we discuss potential mitigating strategies
that different stakeholders within the BLE ecosystem could
implement in order to prevent the attacks detailed in Sec-
tion 3.1. We consider the Bluetooth Special Interest Group
(SIG), Android (i.e., Google), and BLE device/application
developers as stakeholders.

Bluetooth SIG

The Bluetooth SIG is the group that is responsible for defin-
ing and maintaining the Bluetooth standard, which provides
details on pairing, bonding and BLE attribute permissions.
The SIG also defines various BLE services, including some
that handle user health information, e.g., the Heart Rate Ser-
vice and the Continuous Glucose Monitoring Service. The
Bluetooth specifications for these services require only pair-
ing as a protection mechanism for the characteristics that
hold health-related measurements [10, 11]. This protection
is intended to avoid man-in-the-middle attacks and eaves-
dropping. However, as shown in Section 3.1, pairing will
not prevent unauthorized Android applications from access-
ing the sensitive data held in these characteristics.

This issue could be avoided by modifying the Bluetooth
specification and introducing specific security measures for
protecting data at higher layers. However, this would require
changes to all devices within the ecosystem, which may not
be feasible due to the sheer volume of devices and applica-
tions currently available, and which could lead to fragmen-
tation and reduced interoperability. Despite this, we believe
that developers accessing Bluetooth documentation should
at least be made aware of the risks involved, and have there-
fore notified the SIG via their Support Request Form (17 Dec

5



2018). We were informed (19 Dec 2018) that the case had
been assigned to the appropriate team for assessment.

Android

Allowing all applications on an Android device to share BLE
communication channels and long-term keys may well be by
design, particularly since the BLE standard does not provide
explicit mechanisms for selectively allowing or denying ac-
cess to data based on the source application. This model may
work in some situations, for example on a platform where all
applications originate from the same trusted source. How-
ever, the Android ecosystem is such that, many of the ap-
plications on a device are from different and potentially un-
trusted sources. In this scenario, providing all applications
with access to a common BLE transport opens up possibili-
ties for attack, as we have demonstrated.

One option to eliminate the problem is to modify how
the operating system handles BLE communication chan-
nels. The modification would require some form of associ-
ation between BLE credentials and the application that trig-
gers the pairing/bonding process. Each data access request
would then be checked against the permissions associated
with the requesting application. This approach is favoured by
Naveed et al., who propose a re-architected Android frame-
work which will create a bonding policy when an application
triggers pairing with a Bluetooth device [32]. This strategy
has the advantage that Bluetooth devices will be protected by
default from unauthorized access to their data. Further, as-
suming a suitably strong pairing mechanism is used, a min-
imum level of security will also be guaranteed. However,
not only will the operating system(s) need to be modified,
but also a mechanism will be required for ensuring that all
users’ mobile devices are updated. Otherwise, it is fairly
likely that this measure will result in a fragmented ecosys-
tem, with some devices running the modified operating sys-
tem with protection mechanisms, and others running older
versions of the OS with no protection.

Regardless of whether or not the above measure is imple-
mented, we believe that developers should be made aware of
the possibility of unauthorized applications accessing their
BLE device data. At present, Android does not mention the
issue in its Developer Guide [5]. In fact, to the best of the
authors’ knowledge, there is only a single document, from
a BLE chipset manufacturer, which explicitly references the
fact that multiple Android applications can simultaneously
use a connection to a BLE device [33]. Apart from this,
the risks of “system-wide pairing” have been mentioned in a
specification issued by the Fast ID Online (FIDO) Alliance,
without specific reference to mobile platforms [21].

We submitted a security issue to the Android Security
Team on 02 Nov 2018, focusing on the need of clear docu-
mentation so that developers are aware of the need for imple-
menting additional protection measures if they are handling

sensitive BLE data. We have received no response, except
that the case has been assigned to a member of the team (15
Dec 2018).

BLE Device/Application Developers

Despite the BLE stack containing an application layer, it
could be argued that BLE is commonly viewed as a lower-
layer technology for providing wireless communication ca-
pabilities, on top of which higher-layer technologies oper-
ate [13, 38]. This would result in the responsibility of se-
curing user data being transferred from the Bluetooth SIG or
Android to the BLE application/device developers. At any
rate, this is the only mechanism available at present for pro-
tecting data against access by co-located applications.

That is, rather than relying solely on the pairing pro-
vided by the underlying operating system, developers can
implement end-to-end security from their Android appli-
cation to the BLE peripheral firmware. It may be possi-
ble to achieve such behavior via BLE authorization per-
missions, because even though their purpose is to specify
a requirement for end user authorization, the behavior of
BLE devices when encountering authorization requirements
is implementation-specific. Most modern BLE chipsets im-
plement authorization capabilities by intercepting read/write
requests to the protected characteristics, and allowing for
developer-specified validation.

One advantage of this method is that it gives the devel-
oper complete control over the strength of protection that is
applied to BLE device data, as well as over the timings of
security updates. However, leaving the implementation of
security to the developer runs the risk of cryptography being
applied improperly, thereby leaving the data vulnerable [18].
For existing developments, retrofitting application-layer se-
curity would mean that both an update for the Android ap-
plication and a firmware update for the BLE device would
be required, and there is a risk that the BLE firmware update
procedure itself may not be secure [4].

Due to the lack of clear guidelines regarding attribute se-
curity in both the Android Developer Guide and the Blue-
tooth specification, it is also possible that developers imple-
ment no security at all, due to an assumption that protection
will be handled by pairing. In the next section, we test this
assertion of a lack of developer awareness by exploring the
current state of application-layer security deployments via a
large-scale analysis of BLE-enabled Android applications.

4 Marketplace Application Analysis

As evidenced by our experiments, it is fairly straightforward
for any Android application to connect to a BLE device and
read or write pairing-protected data. As discussed in Sec-
tion 3.3, the only strategy available at present is for develop-
ers to implement application-layer security, typically in the

6



Table 1: APKs and Downloads per Google Play Category
Category APKs [packages] Downloads(mil)

Health & Fitness 3012 [1263] 344.95
Lifestyle 1501 [1006] 52.60
Business 1489 [950] 39.62
Tools 1428 [891] 6308.62
Sports 1268 [685] 17.74
Travel & Local 948 [545] 31.83
Productivity 526 [305] 43.05
Entertainment 446 [284] 128.41
Music & Audio 406 [239] 51.48
Education 313 [225] 3.35
Shopping 383 [190] 144.87
Maps & Navigation 348 [181] 33.21
Medical 407 [177] 5.68
Communication 395 [146] 755.89
Finance 259 [126] 96.38
Auto & Vehicles 236 [119] 4.13
Food & Drink 146 [87] 6.23
Photography 114 [80] 45.78
Social 203 [77] 663.43
Other 746 [516] 258.41

a We make the assumption that all versions of an application
fall under the same category.
b Some APKs within the dataset are no longer available on
Google Play and hence, have no corresponding category.
These have not been included.

form of cryptographic protection, between the Android ap-
plication and the BLE peripheral.

In this section, we identify the proportion of applications
that do not implement such security mechanisms, to demon-
strate a possible lack of awareness surrounding the issue, and
to be able to estimate the number of devices that are poten-
tially vulnerable to the types of attack shown in Section 3.1.

To identify the presence of application-layer security,
there are two possible targets for analysis: BLE peripheral
firmware or Android applications. At present, there is no
public repository of BLE firmware, which means that the
firmware would need to be obtained from the peripherals
themselves. This would necessitate the purchase of a large
number of devices and would not be financially viable. Fur-
ther, reverse-engineering and analyzing BLE firmware is not
straightforward, as the firmware image is usually a .hex file,
which can typically only be converted to binary or assembly.
Android APKs, on the other hand, are easier to obtain, and
a number of decompilers exist that allow for conversion of
APKs to a human-readable format.

We therefore target Android applications for our analysis
and perform the following: (1) obtain a substantial dataset of
BLE-enabled Android APKs, (2) determine the BLE method
calls and the cryptography libraries of interest, and (3) define
a mechanism to determine whether BLE reads and writes
make use of cryptographically processed data. We then ap-
ply this mechanism to our dataset and analyze the results.

4.1 APK Dataset

We obtained our dataset from the AndroZoo project [7]. This
is an online repository that has been made available for re-
search purposes and which contains APKs from several dif-
ferent application marketplaces. We focus on only those
APKs that were retrieved from the official Google Play store,
which nevertheless resulted in a sizeable dataset of over 4.6
million APKs. This dataset includes multiple versions for
each application, as well as applications that are no longer
available on the marketplace. We performed our analysis
over the entire dataset, rather than focusing on only those
APKs that are currently available on Google Play. This was
in part because older versions of an application may still be
residing on users’ devices, and in part to be able to identify
trends in application-layer security deployments over time.

As we are only interested in those applications that per-
form BLE attribute access, and because such access al-
ways requires communicating with the GATT server on the
BLE peripheral, the APKs were filtered by the BLUETOOTH

permission declaration and by calls to the connectGatt

method, which is called prior to performing any data reads or
writes. 18,929 APKs, comprising 11,067 unique packages1,
from the original set of 4,600,000+ APKs satisfy this criteria,
and these formed our final dataset.

Application Categories

Applications are categorized in Google Play according to
their primary function, such as “Productivity” or “Entertain-
ment”, and it may be possible to gauge the sensitivity of the
BLE data handled by an application based on the category it
falls under. For example, “Health and Fitness” applications
are probably more likely to hold personal user data than “En-
tertainment” applications.

The number of APKs per category has been listed in Ta-
ble 1 for our dataset. Approximately 23% of the APKs (18%
of unique applications) fall under the categories of “Health
and Fitness” and “Medical”, with a cumulative download
count of over 350 million. Note that the disproportionately
high volume of downloads for the category “Tools” is due

1An Android application may have many versions, each of which will
be a separate APK file (with a unique SHA256 fingerprint), but all of which
will have the same package name. We use the terms “unique applications”
or “unique packages” to denote the set of APKs that contain only the latest
version of each application.

7



Table 2: BLE Data Access Methods
Access Method Signaturea #APKs % of Total Methodsb

Read

byte[] getValue () 17896 61.58%
Integer getIntValue (int, int) 8051 27.70%
String getStringValue (int) 2313 7.96%
Float getFloatValue (int, int) 800 2.75%

Write

boolean setValue (byte[] ) 16198 70.49%
boolean setValue (int, int, int) 5542 24.11%
boolean setValue (String) 627 2.73%
boolean setValue (int, int, int, int) 611 2.66%

a All methods are from the class android.bluetooth.BluetoothGattCharacteristic.
b “% of Total Methods” refers to the percentage of occurrences of a particular method for a particular data
access type (i.e., read or write), with respect to all methods that enable the same type of data access.

to the Google and Google Play applications, which include
BLE capabilities and are installed on most Android devices.

4.2 Identification of BLE Methods and
Crypto-Libraries

We perform our analysis against specific BLE methods
and crypto-libraries. When considering BLE methods,
we focus on those methods that involve data writes and
reads. Such methods have been listed in Table 2, and
function as the starting point for our analysis. For data
writes, the BluetoothGattCharacteristic class within
the android.bluetooth package has setValue methods
that set the locally-stored value of a characteristic. This is
then written out to the BLE peripheral. For data reads, the
same class has getValue methods, which return data that is
read from the BLE device. In a few APKs that we analyzed,
BLE data access methods were also called from within other,
vendor-specific libraries. However, we do not include these
in our analysis as they are now obsolete.

For cryptography, Android builds on the Java Cryptog-
raphy Architecture [2] and provides a number of APIs,
contained within the java.security and javax.crypto

packages, for integrating security into applications. While
it is possible for developers to implement their own algo-
rithms, Android recommends against this [6]. We therefore
consider only calls to these two packages as an indication of
application-layer security.

4.3 BLECryptracer
Identification of cryptographically-processed BLE data is in
essence a taint-analysis problem. For instance, a call to an
encryption method will taint the output variable that may
later be written to a BLE device. For the purpose of this pa-
per, when analyzing data that is read from a BLE peripheral,
we consider the getValue variants in Table 2 as sources and

the cryptography API calls as sinks. For data that is written
to the BLE device, we consider the cryptography API calls
as sources and the setValue methods as sinks.

There are a number of tools available for performing taint-
analysis, such as Flowdroid [8] and Amandroid [39]. How-
ever, running a subset of our dataset of APKs through Aman-
droid (selected because of advantages over Flowdroid and
other taint-analysis tools [34]), we found that analysis of a
single APK sometimes utilized over 10GB of RAM and took
several hours to complete. We also found through manual
analysis that many instances of cryptographically-processed
data were not identified by Amandroid, especially when the
BLE functions were called from third-party libraries. We
therefore developed a custom Python analysis tool called
BLECryptracer, to analyze all calls to BLE setValue and
getValue methods within an APK.

BLECryptracer is developed on top of Androguard [17],
an open-source reverse-engineering tool that decompiles an
Android APK and enables analysis of its components. Our
tool traces values to/from BLE data access functions and de-
termines whether the data has been cryptographically pro-
cessed. To achieve this, it employs a technique for trac-
ing register values which is sometimes referred to as “slic-
ing” and which has been utilized in several static code anal-
yses [18, 25, 35]. It also traces fields, as well as mes-
sages passed via Intents2 and certain threading functions,
e.g., AsyncTask. It returns TRUE at the first instance of
cryptography that it encounters and FALSE if it is unable to
identify any application-layer security with BLE data.

Our tool analyzes BLE reads and writes separately, as the
direction of tracing is different in the two cases. It performs
three main types of tracing, in the following order:

1. Direct trace - Attempt to identify link between BLE and
cryptography functions via direct register value trans-
fers and as immediate results of method invocations.

2By matching the Extra identifier within the calling method.

8



Table 3: Accuracy Statistics
Access Tool Confidence App Seta Detectedb TP FP TN FN Precision Recall F-measure

Read

Amandroid N/A 92 49 44 5 10 33 90% 57% 70%

BLECryptracer
High 92 62 58 4 11 19 94% 75% 83%
Medium 30 11 7 4 7 12 64% 37% 47%
Low 19 12 8 4 3 4 67% 67% 67%

Write

Amandroid N/A 92 56 49 7 8 28 88% 64% 74%

BLECryptracer
High 92 50 46 4 11 31 92% 60% 72%
Medium 42 22 19 3 8 12 86% 61% 72%
Low 20 10 5 5 3 7 50% 42% 45%

a Number of APKs tested. Note that, for confidence levels Medium and Low, we don’t consider the APKs detected at higher
confidence levels.
b The number of APKs that were identified as having cryptographically protected BLE data.

2. Associated entity trace - If the direct trace does not
identify a link between source and sink, analyze ab-
stract/instance methods and other registers used in pre-
viously analyzed function calls.

3. “Lenient” trace - If the above methods fail to return
a positive result, perform a search through all previ-
ously encountered methods (which would have origi-
nated from the BLE data access method), to determine
if cryptography is used anywhere within them.

The first trace method will produce results that are most
likely to actually have cryptographically-processed BLE
data, as the coarse-grained analysis performed in the subse-
quent methods adds increasing amounts of uncertainty. For
this reason, BLECryptracer assigns “confidence levels” of
High, Medium and Low to its output, which correspond to
the three trace methods above, to indicate how certain it is
of the result. We evaluate these confidence levels against
a modified version of the DroidBench benchmarking suite
in Section 4.4. Note that BLECryptracer only looks for
application-layer security in benign applications, and these
confidence levels apply only when deliberate manipulations
(i.e., malicious obfuscation techniques) are not employed to
hide the data flow between source and sink.

Appendix A describes the tracing mechanism in greater
detail, and also outlines how BLECryptracer combats the ef-
fects of obfuscation in benign applications.

4.4 Evaluation

We evaluated BLECryptracer, in terms of both accuracy and
execution times. For comparison purposes, we have included
test results from Amandroid as well.

Accuracy Measures

At present, there is no dataset of real-world APKs with
known use of cryptographically-processed BLE data, i.e.,
ground truth. Therefore, in order to test our tool against dif-
ferent data transfer mechanisms, we re-factored the Droid-
Bench benchmarking suite [22] for the BLE case.

Each DroidBench test application was cloned twice and
modified so the data flow between the sources and sinks
would be from getValue to a cryptography method in-
vocation, and from the cryptography method invocation
to setValue, to emulate cryptographically-processed reads
and writes, respectively. Some DroidBench test cases were
excluded as they were found to be irrelevant due to differ-
ences in the objectives of DroidBench and our test set, e.g.,
applications that employ emulator detection or which leak
contextual information in exceptions. Further, applications
where BLE data is written to or read from files, or which
contain data leaks in inactive code segments were not in-
cluded (as our aim is to determine whether or not BLE data
is cryptographically-processed). In total, we created 184
APKs: 92 for reads and 92 for writes.

We executed BLECryptracer against our benchmarking
test set, analyzed the results and obtained performance met-
rics in terms of the three different confidence levels. The
statistics differ based on the type of access that is analyzed
(i.e., reads vs. writes) due to differences in the tracing mech-
anisms. The same test set was also used against Amandroid
for comparison. Table 3 presents the performance metrics
for both tools.

In the case of BLECryptracer results, the metrics are with
respect to the total analyzed APKs at each confidence level.
That is, because lower confidence levels analyze only those
APKs that do not get detected at higher levels, accurate met-
rics can only be derived by considering the set of APKs
that were actually analyzed at each level. For example,
when considering the analysis of BLE reads, while the en-

9



tire dataset of 92 APKs is relevant for confidence level High,
only the 30 APKs that do not result in a TRUE outcome at
level High will be analyzed for confidence level Medium.
This also means that, when obtaining performance metrics
for confidence level High, all TRUE results obtained at lev-
els Medium and Low are taken to be FALSE.

The DroidBench test set, and hence our benchmarking
suite, is an imbalanced dataset, containing far more samples
with leaks (77) than without (15). For this reason, metrics
such as accuracy are not suitable for analyzing the perfor-
mance of our tool when executed against this test set, as they
are more susceptible to skew [24, 27]. For our analysis, we
compare the combined True Positive Rate (TPR) and False
Positive Rate (FPR), and the combined precision-recall in-
stead, in-line with taint-analysis evaluations [36].

Table 3 presents the precision and recall (i.e., TPR) for
both BLECryptracer and Amandroid. We further derive
FPRs for both tools. With BLECryptracer, when analyz-
ing reads, False Positive Rates steadily increase as the con-
fidence level reduces, as expected, with values of 27% for
confidence level High, 36% for Medium and 57% for Low.
When analyzing writes, the values are 27%, 27% and 63%,
respectively. Regardless of the data access mechanism be-
ing tested, BLECryptracer (considering only the results at
High confidence, for a fairer comparison) performs better
than Amandroid in terms of FPR, with 27% vs. 33% for
reads and 27% vs. 47% for writes. Precision values are also
better in the case of BLECryptracer for both reads and writes.
In terms of the True Positive Rate, BLECryptracer performs
better than Amandroid for reads at 75% vs. 57%, and slightly
worse for writes at 60% vs. 64%. These results show that,
overall, BLECryptracer performs better than Amandroid for
analyzing the use of cryptography with BLE data.

It should be noted that three of the four False Positives ob-
tained by BLECryptracer at the High confidence level were
due to the order in which variables are assigned values (i.e.,
lifecycle events), which is not tested for by BLECryptracer.
Other data transfer mechanisms not tested for are Looper

and Messenger functions, which generate False Negatives.
The remaining False Positive was due to the presence of
method aliasing and was also identified as a False Positive
by Amandroid. In addition, the unexpectedly low TPR (i.e.,
recall) at level Medium for reads is due to the relatively few
cases analyzed at that level when compared to High.

Execution Times

We also compared BLECryptracer and Amandroid in terms
of speed of execution. For this, we ran the two tools against
a random subset of 2,000 APKs and compared time-to-
completion in both cases. We imposed a maximum run-time
of 30 minutes per APK for both tools, and only compared ex-
ecution times for those cases where Amandroid did not time
out (approximately 40% of the tested APKs timed out when

0 500 1,000 1,500

0

500

1,000

1,500

Amandroid Execution Time (s)

B
LE

C
ry

pt
ra

ce
r

Ex
ec

ut
io

n
T

im
e

(s
)

Figure 4: Comparison of time taken to execute Amandroid
vs. BLECryptracer, when analyzing BLE writes.

analyzed by Amandroid. In comparison, fewer than 2% of
APKs timed out when analyzed by BLECryptracer).

Figure 4 plots the time taken to analyze BLE writes us-
ing BLECryptracer vs. Amandroid. The figure shows that
analysis times with BLECryptracer were, for the most part,
around 3-4 minutes per application. We observed no obvious
correlation between the size of the application’s dex file and
the execution time, for either tool. APKs that took longer to
process with BLECryptracer were predominantly of confi-
dence level “Medium”, which indicates that the longer anal-
ysis times may simply have been because of having to first go
through the most stringent analysis (at the highest confidence
level). For Amandroid, the execution times vary to a greater
extent than with BLECryptracer, due to the difference in the
mechanisms employed for performing the analysis.

4.5 Results from Large-Scale APK Analysis

We executed BLECryptracer against our dataset of 18,929
APKs. 376 APKs timed out when analyzing reads and 335
APKs timed out when analyzing writes, when a maximum
runtime of 30 minutes was imposed. These APKs were re-
tested with an increased runtime of 60 minutes. However,
even with the longer analysis time, 114 and 161 APKs timed
out for reads and writes, respectively, and had to be excluded
from further analysis. In addition, 88 APKs could not be
processed via Androguard’s AnalyzeAPK method and were
excluded.

Due to the differences in performance metrics obtained for
the three confidence levels during testing (as mentioned in
Section 4.4), we focus on only those results that either iden-
tify cryptography at confidence level High or those where no
cryptography was identified at all.

10



0% 20% 40% 60% 80% 100%

Writes

Reads

8,834

8,510

329

100

3,052

5,262

4,080

4,527

High Medium Low None

Figure 5: Analysis results depicting the presence of
cryptographically-processed data with BLE writes and reads,
with breakdown according to Confidence Level.

Presence of Application-Layer Security with BLE Data

Our results show that approximately 95% of BLE-enabled
APKs call the javax.crypto and java.security cryp-
tography libraries somewhere within their code. While this
is a large proportion of APKs, the results also indicate that
a much smaller percentage of APKs use cryptographically
processed data with BLE reads and writes (approximately
25% for both, identified with High confidence). In fact,
about 46% of APKs that perform BLE reads and 54% of
those that perform BLE writes (corresponding to 2,379 mil-
lion and 2,075 million cumulative installations, respectively)
do not implement security for the BLE data. Interestingly,
of the 15,986 APKs that called both BLE read and write
functions, about 36% (i.e., more than 5,700 APKs), with a
cumulative download count of 1,005 million, do not imple-
ment application-layer security for either type of data access.
Figure 5 summarizes the proportion of APKs that were iden-
tified as containing cryptographically protected BLE data at
the three different confidence levels.

Third-Party Libraries vs. App-Specific Implementations

We found that many BLE-enabled APKs actually use third-
party libraries for incorporating BLE functionality. To get an
idea of exactly how many APKs relied on libraries, we ana-
lyze all methods within an APK that called BLE data access
functions. To do this in an automated way, we compare the
method class name with the application package name. If
the first two components (e.g., com.packagename) of each
match, then we take it to be a method implemented within
the application. If the components do not match, we take it
to be a library method.

Of the APKs that called the setValue method, 63% used
BLE functionality solely through libraries, 32% APKs used
application-specific methods only, while 4% APKs used

both. Fewer than 1% of the APKs could not be analyzed
due to very short method names. Within the APKs that used
both application-specific methods and libraries, around 34%
used an external library to provide Device Firmware Update
(DFU) capabilities, thereby enabling the BLE peripheral to
be updated via the mobile application. Of the APKs that uti-
lized only application-specific methods to incorporate BLE
functionality, 67% did not implement application-layer se-
curity with the BLE data. This proportion was lower at 48%
for applications that relied on libraries.

In the case of the APKs that called getValue variants,
37% APKs used only application-specific methods, 58%
used only libraries, and 5% used both. Similar to the
setValue case, a higher proportion of APKs that imple-
mented BLE functionality solely within the application did
not use cryptography (60%), when compared with those that
used only libraries (39%).

Table 4 presents the ten most commonly-encountered BLE
libraries, their functionality, the number of APKs that use
them, and the presence of cryptographically-processed BLE
data within the library itself. The table shows that the
most prevalent third-party packages are libraries that en-
able communication with BLE beacons. In fact, a single
such library (Estimote) made up more than 90% of all in-
stances of cryptographically-processed BLE writes and 85%
of cryptographically-processed BLE reads (identified with
High confidence). An analysis of this library suggested that
cryptography is being used to authenticate requests when
modifying settings on the beacon.

Apart from beacon libraries, we identified five libraries
that function as wrappers for the Android BLE API. For ex-
ample, Polidea wraps the API so that it adheres to the re-
active programming paradigm. The libraries Randdusing,
Megster and Evothings enable the use of BLE via JavaScript
in Cordova-based applications. Similarly, Chromium en-
ables websites to access BLE devices via JavaScript calls.
None of the libraries handle cryptographically-processed
BLE data. It is expected that developers using these libraries
will implement their own application-layer security (using
either JavaScript or reactive Java as appropriate).

Of the two remaining libraries, Flic, which uses
cryptographically-processed data, is a library offered by a
BLE device manufacturer. This library allows third-party de-
velopers to integrate their services into the Flic ecosystem, to
allow them to automate certain tasks.

Finally, Nordicsemi is a library provided by a BLE chipset
manufacturer to enable DFU over the BLE interface. With
the newest version of the DFU mechanism, the BLE periph-
eral verifies that the firmware has been properly signed. De-
vices using the legacy DFU mechanism will not verify the
firmware. However, the mobile application (and by exten-
sion, the library) does not need to handle cryptographically-
processed data in either case.

11



Table 4: Top Ten Third-Party BLE Libraries
Library Function #APKs[unique] Crypto
Estimote Beacon 3980[2804] Yes
Nordicsemia DFU 1238[847] No
Kontakt Beacon 1108[690] No
Chromium Web BLE 402[269] No
Randdusing Cordova Plugin 268[188] No
Megster Cordova Plugin 317[187] No
Flic BLE Accessory 173[164] Yes
Polidea BLE Wrapper 138[114] No
Evothings Cordova Plugin 142[84] No
Jaalee Beacon 102[79] No

a Significant overlap present between Estimote and Nordic
due to repackaging of the Nordic SDK into Estimote.

Cryptographic Correctness

BLECryptracer identified 3,228 unique packages with cryp-
tographically protected BLE data (with either reads or
writes), with High confidence. However, the presence of
crypto-libraries does not in itself indicate a secure system.
We therefore further analyzed this subset of APKs to identify
whether cryptography had been used correctly in them. The
tool CogniCrypt [30] was utilized for this purpose. Although
this tool does not formally verify the cryptographic protocol
between the application and the BLE peripheral, it identifies
various misuses of the Java crypto/security libraries.

Even among the 3,228 unique packages, we found that
there was significant overlap between APKs in terms of the
BLE libraries or functions used3. Removing such duplicates
resulted in a set of 194 APKs. Of these, 68 were identified by
CogniCrypt as having issues. However, because CogniCrypt
identifies cryptography misuse within the entire APK, the re-
sults were filtered for BLE-specific functions. 24 APKs were
found to have issues within or associated with the methods
that cryptographically processed BLE data (as identified by
BLECryptracer) and often, a single APK exhibited multiple
issues. Table 5 shows the different types of misuse encoun-
tered and the number of unique packages that were identified
as having such misuse. Note that because this analysis was
performed over unique packages, the number of APKs that
misuse crypto-libraries will be higher.

We manually analyzed the 24 APKs that were flagged
by CogniCrypt as having BLE-relevant issues, and exam-
ined the identified instances of bad cipher modes and hard-
coded keys/Initialization Vectors (IVs). With regard to in-
secure block cipher modes, we found that explicit use of

3There are instances where two applications may have unique package
names, but which actually incorporate much the same functionality. This
is often the case when the same developer produces branded variants of an
application for different clients in a single industry.

Table 5: Number of Packages with Cryptographic Misuse
Misuse Typea #Unique Packages
ECB (or other bad mode) 10
Non-random key 6
Non-random IV 10
Bad IV used with Cipher 7
Bad key used with Cipher 11
Incomplete operation (dead code) 4

a Description of misuse based on [18, 31].

ECB was prevalent (9 out of 10 cases), but there was also
one case where Cipher.getInstance("AES") was used
without the mode being specified, which may default to
ECB depending on the cryptographic provider. When ana-
lyzing keys, we observed that several applications directly
contained hardcoded keys as byte arrays or strings. Three
applications retrieved keys from JSON files. In two cases,
keys were generated from the ANDROID ID, which is a sys-
tem setting that is readable by all applications. We also ob-
served one instance where a key was obtained from a server
via HTTP (not HTTPS).

This analysis shows that several real-world applications
contain basic mistakes in their use of crypto-libraries and
handling of sensitive data, which means that the BLE data
will not be secure despite the use of cryptography.

Trends over Time

Figure 6 shows the trend of application-layer security over
time for applications that incorporates calls to BLE reads or
writes. The graph depicts the percentage of applications that
do not have cryptographic protection for either type of ac-
cess. The overall downward trend suggests that there has
been some improvement in application-layer security be-
tween the years 2014 and 2017 (we refrain from making ob-
servations about APKs from 2013 as they were very few in
number, and about APKs from 2018 as the dataset is not
yet fully populated for this year). However, it should be
noted that, even in 2017, which had the smallest percentage
of APKs without cryptography, these APKs corresponded to
128 million downloads, which is a significant number.

Application-Layer Security by Category

The percentage of applications that use cryptographically
processed data from each major application category has
been graphed in Figure 7. While it would be reasonable to
expect that most “Medical” applications would implement
some level of application-layer security, the results show that
fewer than 30% of applications under this category actually
have such protection mechanisms. However, it is possible

12



2013 2014 2015 2016 2017 2018

40

60

80

100

Year

%
A

PK
s

w
ith

no
C

ry
pt

og
ra

ph
y

Figure 6: Application-layer security trends over time. Notes:
Graph depicts APKs that perform BLE reads or writes, and
have no crypto for either. APKs with dates that are invalid [3]
or older than 2012 (when native BLE support was introduced
for Android) have not been included.

that the reason for this is that the devices implement the stan-
dard Bluetooth SIG adopted profiles, which do not mandate
any security apart from pairing, as mentioned in Section 3.3.
In fact, of the APKs categorized under “Medical” and with
no cryptographic protection for either reads or writes, we
found that three of the top ten (in terms of installations) con-
tained identifiers for the standard Bluetooth Glucose Service.

Perhaps surprisingly, APKs that are categorized under
“Business”, “Shopping” and “Travel & Local” appear to be
the most likely to incorporate application-layer security, with
around 50% of all such applications being identified as hav-
ing cryptographically processed BLE data with High confi-
dence. However, in over 85% of such occurrences, this was
found to be due to the Estimote beacon library.

Impact Analysis

While 18,929 BLE-enabled applications may seem like a rel-
atively small number of applications when compared with
the initial dataset of 4.6 million+, a single application may
correspond to multiple BLE devices, sometimes even mil-
lions of devices as is the case with fitness trackers [26]. For
example, even if we consider the slightly restrictive case of
unique applications that do not use cryptography with either
reads or writes, the cumulative install count is still in excess
of 1,005 million. This shows that the attack surface is much
larger than may be indicated by the number of APKs.

It is of course a possibility that the data that is read from
a BLE peripheral has no impact on user security or privacy
(e.g., device battery levels). Understanding the data within

H
ea

lth
&

Fi
tn

es
s

L
if

es
ty

le
B

us
in

es
s

To
ol

s
Sp

or
ts

Tr
av

el
&

L
oc

al
Pr

od
uc

tiv
ity

E
nt

er
ta

in
m

en
t

M
us

ic
&

A
ud

io
E

du
ca

tio
n

Sh
op

pi
ng

M
ap

s
&

N
av

ig
at

io
n

M
ed

ic
al

C
om

m
un

ic
at

io
n

Fi
na

nc
e

A
ut

o
&

V
eh

ic
le

s
Fo

od
&

D
ri

nk
Ph

ot
og

ra
ph

y
So

ci
al

O
th

er

0

20

40

60

80

100

Category
%

A
PK

s
w

ith
C

ry
pt

og
ra

ph
ic

al
ly

Pr
oc

es
se

d
D

at
a

High
Medium
Low

Figure 7: Presence of application-layer security in differ-
ent categories of applications, averaged over BLE reads and
writes, and broken down by confidence level. Only unique
packages have been taken into consideration. APKs that do
not currently have a presence on Google Play have been ex-
cluded, as their category cannot be identified.

APKs would require a more complex static analysis and is
left as future work.

4.6 Case Study: Firmware Update over BLE

When analyzing our results, we found that one of the APKs
that was identified as not having application-layer security
was designed for use with a fitness tracker from our test
device set. The tracker is a low-cost model that, based on
the install count on Google Play (1,000,000+), appears to be
widely used. An analysis of the APK suggested that the de-
vice used the Nordic BLE chipset, which could be put into
the Legacy DFU mode, which does not require the firmware
to be signed. To exploit this, we developed an APK that, in
accordance with the attacks described in Section 3.1, con-
nects to the device, sends commands to place it in DFU
mode, and then writes a new modified firmware to the de-
vice without user intervention. The updated firmware in this
case was a simple, innocuous modification of the original
firmware. However, given that the device can be configured
to receive notifications from other applications, a malicious
firmware could be developed in such a way that all notifi-
cations (including second-factor authentication SMS mes-
sages or end-to-end encrypted messages) are routed to the

13



malicious application that installed the firmware. This attack
was possible because the BLE peripheral did not verify the
firmware nor the source application (via application-layer se-
curity). We have informed the application developer of the
issue (02 Nov 2018), but have received no response as yet.

While our attack was crafted for a specific device, it does
demonstrate that attacks against these types of devices are
relatively easy. An attacker could easily embed several
firmware images within a single APK to target a range of
vulnerable devices.

4.7 Limitations
In this section, we outline some limitations, either in our
script or due to the inherent nature of our experiments, that
may have impacted our results.

Unhandled Data Transfer Mechanisms

As mentioned in Section 4.4, BLECryptracer does not ana-
lyze data that is written out to file (including shared prefer-
ences), or communicated out to a different application, be-
cause it is not straightforward (and many times, not possi-
ble) to determine how data will be handled once it has been
transferred out of the application under analysis. It is also
possible that an application obtains the data to be written to
a BLE device from, or forwards the data read from a BLE
device to, another entity, such as a remote server. That is,
the Android application could merely act as a “shuttle” for
the data, which means that an analysis of the APK would not
show evidence of usage of cryptography libraries. However,
the transfer of data to/from a remote server does not in itself
indicate cryptographically-processed data, as plain-text val-
ues can also be transmitted in the same manner. We therefore
do not analyze instances of data transfers to external entities.

BLECryptracer also does not handle data transfers be-
tween a source and sink when only one of them is processed
within an Looper function or when the data is transmitted
via messages. However, when we logged instances of where
such functions were called during a trace, we found that of
the APKs that utilized such data transfer mechanisms, a large
percentage were identified as having cryptographic protec-
tion via other data flows. In fact, of the 8834 APKs where
cryptography was not identified with BLE writes, only 501
APKs interacted with Looper or Messenger, and an even
smaller percentage of APKs were affected for BLE reads.

Conditional Statements with Backtracing

When backtracing a register, BLECryptracer stops when it
encounters a constant value assignment. However, it is pos-
sible that this value assignment occurs within one branch of
a conditional jump, which means that another possible value
could be contained within another branch further up the in-
struction list. To identify this, the script would have to first

trace forward within the instruction list, identify all possible
conditional jumps, and then trace back from the register of
interest for all branches. This would need to be performed
for every method that is analyzed and could result in a much
longer processing time per APK file, as well as potentially
unnecessary overheads.

5 Related Work

User privacy has received particular attention in the BLE
research community because several widely-used BLE de-
vices, such as fitness trackers and continuous glucose moni-
tors, are intended to always be on the user’s person, thereby
potentially leaking information about the user’s whereabouts
at all times. Some of the research has focused on the threats
to privacy based on user location tracking [16, 20], while oth-
ers explored the possibility of obtaining personal user data
from fitness applications or devices [15, 29].

While our research is concerned with data access and user
privacy, we focus more on the impact on privacy and se-
curity due to how the BLE standard has been implemented
in mobile device architectures, as well as how it is applied
by application developers, rather than due to individual BLE
firmware design.

The work that is most closely related to ours is the re-
search by Naveed, et al., which explored the implications of
shared communication channels on Android devices [32]. In
their paper, the authors discussed the issue of Classic Blue-
tooth and NFC channels being shared by multiple applica-
tions on the same device. They then demonstrated unautho-
rized data access attacks against (Classic) Bluetooth-enabled
medical devices. The authors also performed an analysis
of 68 Bluetooth-enabled applications that handled private
user data, and concluded that the majority of them offered
no protection against this attack. Finally, they proposed an
operating-system level control for mitigating the attack.

Our work specifically targets pairing-protected character-
istics on BLE devices, because BLE appears to slowly be
replacing Classic Bluetooth in the personal health and home
security domains. We demonstrate that the BLE data for-
mat and access mechanisms enable even easier attacks than
in the case of Classic Bluetooth. Further, we identify the
impact that the new Android permissions model (introduced
in Android v6) has had on the user experience and on ma-
licious applications’ capabilities. We also perform a much
larger-scale analysis over 18,900+ Android applications, to
determine how prevalent application-layer security is among
BLE-enabled applications.

6 Conclusions

In this paper, we analyze the risks posed to data on Blue-
tooth Low Energy devices from co-located Android applica-

14



tions. We show the conditions under which an unauthorized
Android application would be able to access potentially sen-
sitive, pairing-protected data from a BLE peripheral, once
a co-located authorized application has paired and bonded
with a BLE peripheral, without the user being aware of the
access. We also show that, in some cases, an unauthorized
application may be able to access such protected data with
fewer permissions required of it than would be required of an
authorized application. We then discuss mitigation strategies
in terms of the different stakeholders in the BLE ecosystem.

We present BLECryptracer, an analysis tool for deter-
mining the presence of application-layer security with BLE
data. We evaluate it against the taint-analysis tool Aman-
droid, and present the results from executing BLECryptracer
against 18,929 BLE-enabled Android APKs. Our results
suggest that over 45% of all applications, and about 70%
of “Medical” applications, do not implement cryptography-
based application-layer security for BLE data. We also
found, among the applications that do use cryptographically
processed BLE data, several instances of cryptography mis-
use, such as the use of insecure cipher modes and hard-coded
key values. We believe that, if this situation does not change,
then as more and more sensitive use cases are proposed for
BLE, the amount of private or critical data that may be vul-
nerable to unauthorized access can only increase. We hope
that our work increases awareness of this issue and prompts
changes by application developers and operating system ven-
dors, to lead to improved protection for BLE data.

7 Availability

The code for our BLECryptracer tool is available at

https://github.com/projectbtle/BLECryptracer

This repository also contains the SHA256 hashes of the
APKs in our dataset, and the source/sink files used for the
Amandroid analysis. In addition, it contains source code for
the benchmarking applications, as well as a comprehensive
breakdown of the results per DroidBench category.

References

[1] Distribution dashboard. [Online]. Available: https:

//developer.android.com/about/dashboards/.
[Accessed: 06 Aug 2018].

[2] Java Cryptography Architecture (JCA) Reference
Guide. [Online]. Available: https://docs.

oracle.com/javase/8/docs/technotes/

guides/security/crypto/CryptoSpec.html.
[Accessed: 18 July 2018].

[3] Lists of apks. [Online]. Available: https://

androzoo.uni.lu/lists. [Accessed: 12 Nov 2018].

[4] Firmware Over the Air, 2016. [Online]. Avail-
able: https://docs.mbed.com/docs/ble-

intros/en/master/Advanced/FOTA/. [Accessed:
21 July 2018].

[5] Bluetooth Low Energy overview, Apr 2018. [Online].
Available: https://developer.android.com/

guide/topics/connectivity/bluetooth-le.
[Accessed: 18 July 2018].

[6] Security tips, June 2018. [Online]. Available:
https://developer.android.com/training/

articles/security-tips. [Accessed: 18 July
2018].

[7] ALLIX, K., BISSYANDÉ, T. F., KLEIN, J., AND
LE TRAON, Y. Androzoo: Collecting millions of An-
droid apps for the research community. In Proceedings
of the 13th International Conference on Mining Soft-
ware Repositories (2016), ACM, pp. 468–471.

[8] ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E.,
BARTEL, A., KLEIN, J., LE TRAON, Y., OCTEAU,
D., AND MCDANIEL, P. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. Acm Sigplan Notices 49,
6 (2014), 259–269.

[9] BISIO, I., SCIARRONE, A., AND ZAPPATORE, S. A
new asset tracking architecture integrating RFID, Blue-
tooth Low Energy tags and ad hoc smartphone appli-
cations. Pervasive and Mobile Computing 31 (2016),
79–93.

[10] BLUETOOTH SPECIAL INTEREST GROUP. Heart Rate
Profile: Bluetooth profile specification v1.0, 07 2011.

[11] BLUETOOTH SPECIAL INTEREST GROUP. Contin-
uous Glucose Monitoring Profile: Bluetooth profile
specification v1.0.1, 12 2015.

[12] BLUETOOTH SPECIAL INTEREST GROUP. Bluetooth
core specification v5.0, 12 2016.

[13] BLUETOOTH SPECIAL INTEREST GROUP. Blue-
tooth mesh networking / an introduction for developers,
2017.

[14] BRONZI, W., FRANK, R., CASTIGNANI, G., AND
ENGEL, T. Bluetooth Low Energy performance and ro-
bustness analysis for inter-vehicular communications.
Ad Hoc Netw. 37, P1 (Feb 2016), 76–86.

[15] CYR, B., HORN, W., MIAO, D., AND SPECTER, M.
Security analysis of wearable fitness devices (Fitbit).
Massachusetts Institute of Technology (2014).

15

https://github.com/projectbtle/BLECryptracer
https://developer.android.com/about/dashboards/
https://developer.android.com/about/dashboards/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://androzoo.uni.lu/lists
https://androzoo.uni.lu/lists
https://docs.mbed.com/docs/ble-intros/en/master/Advanced/FOTA/
https://docs.mbed.com/docs/ble-intros/en/master/Advanced/FOTA/
https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://developer.android.com/training/articles/security-tips
https://developer.android.com/training/articles/security-tips


[16] DAS, A. K., PATHAK, P. H., CHUAH, C.-N., AND
MOHAPATRA, P. Uncovering privacy leakage in BLE
network traffic of wearable fitness trackers. In Pro-
ceedings of the 17th International Workshop on Mobile
Computing Systems and Applications (2016), ACM,
pp. 99–104.

[17] DESNOS, A., ET AL. Androguard: Reverse engineer-
ing, malware and goodware analysis of Android appli-
cations ... and more (ninja !). https://github.com/
androguard/androguard.

[18] EGELE, M., BRUMLEY, D., FRATANTONIO, Y., AND
KRUEGEL, C. An empirical study of cryptographic
misuse in Android applications. In Proceedings of the
2013 ACM SIGSAC conference on Computer & com-
munications security (2013), ACM, pp. 73–84.

[19] ELKHODR, M., SHAHRESTANI, S., AND CHEUNG,
H. Emerging wireless technologies in the Internet of
Things: A comparative study. International Journal of
Wireless & Mobile Networks (IJWMN) 8, 5 (Oct 2016),
67–82.

[20] FAWAZ, K., KIM, K.-H., AND SHIN, K. G. Protect-
ing privacy of BLE device users. In USENIX Security
Symposium (2016), pp. 1205–1221.

[21] FIDO ALLIANCE. FIDO Bluetooth Specification v1.0,
2017. https://fidoalliance.org/specs/fido-

u2f-bt-protocol-id-20150514.pdf.

[22] FRITZ, C., ARZT, S., AND RASTHOFER, S.
Droidbench: A micro-benchmark suite to as-
sess the stability of taint-analysis tools for An-
droid. https://github.com/secure-software-

engineering/DroidBench.

[23] GOMEZ, C., OLLER, J., AND PARADELLS, J.
Overview and evaluation of Bluetooth Low Energy:
An emerging low-power wireless technology. Sensors
(Basel, Switzerland) 12, 9 (2012), 11734–11753.

[24] GUO, X., YIN, Y., DONG, C., YANG, G., AND
ZHOU, G. On the class imbalance problem. In Natu-
ral Computation, 2008. ICNC’08. Fourth International
Conference on (2008), vol. 4, IEEE, pp. 192–201.

[25] HOFFMANN, J., USSATH, M., HOLZ, T., AND SPRE-
ITZENBARTH, M. Slicing Droids: Program slicing
for smali code. In Proceedings of the 28th Annual
ACM Symposium on Applied Computing (2013), ACM,
pp. 1844–1851.

[26] IDC. Worldwide wearables market grows 7.3%
in Q3 2017 as smart wearables rise and basic
wearables decline, says IDC. [Online]. Avail-
able: https://github.com/secure-software-

engineering/DroidBench [Accessed 16-Feb-2017].

[27] JENI, L. A., COHN, J. F., AND DE LA TORRE, F.
Facing imbalanced data–recommendations for the use
of performance metrics. In Affective Computing and In-
telligent Interaction (ACII), 2013 Humaine Association
Conference on (2013), IEEE, pp. 245–251.

[28] KARANI, R., DHOTE, S., KHANDURI, N., SRINI-
VASAN, A., SAWANT, R., GORE, G., AND JOSHI,
J. Implementation and design issues for using Blue-
tooth Low Energy in passive keyless entry systems.
In India Conference (INDICON), 2016 IEEE Annual
(2016), IEEE, pp. 1–6.

[29] KOROLOVA, A., AND SHARMA, V. Cross-app track-
ing via nearby Bluetooth Low Energy devices. In Pri-
vacyCon 2017 (2017), Federal Trade Commission.

[30] KRÜGER, S., NADI, S., REIF, M., ALI, K., MEZINI,
M., BODDEN, E., GÖPFERT, F., GÜNTHER, F.,
WEINERT, C., DEMMLER, D., ET AL. CogniCrypt:
supporting developers in using cryptography. In Pro-
ceedings of the 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering (2017), IEEE
Press, pp. 931–936.

[31] KRÜGER, S., SPTH, J., ET AL. CogniCrypt SAST:
CrySL-to-static analysis compiler. https://github.
com/CROSSINGTUD/CryptoAnalysis/.

[32] NAVEED, M., ZHOU, X., DEMETRIOU, S., WANG,
X., AND GUNTER, C. A. Inside job: Understanding
and mitigating the threat of external device mis-binding
on Android. In 21st Annual Network and Distributed
System Security Symposium, NDSS 2014, San Diego,
California, USA, February 23-26, 2014 (2014).

[33] NORDIC SEMICONDUCTOR. BLE on An-
droid v1.0.1. [Online]. Available: https:

//devzone.nordicsemi.com/attachment/

bdd561ff56924e10ea78057b91c5c642. [Accessed:
05 Feb 2018].

[34] PAUCK, F., BODDEN, E., AND WEHRHEIM, H. Do
Android taint analysis tools keep their promises? In
Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering
(New York, NY, USA, 2018), ESEC/FSE 2018, ACM,
pp. 331–341.

[35] POEPLAU, S., FRATANTONIO, Y., BIANCHI, A.,
KRUEGEL, C., AND VIGNA, G. Execute this! Ana-
lyzing Unsafe and malicious dynamic code loading in
Android applications. In NDSS (2014), vol. 14, pp. 23–
26.

16

https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://fidoalliance.org/specs/fido-u2f-bt-protocol-id-20150514.pdf
https://fidoalliance.org/specs/fido-u2f-bt-protocol-id-20150514.pdf
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://github.com/CROSSINGTUD/CryptoAnalysis/
https://github.com/CROSSINGTUD/CryptoAnalysis/
https://devzone.nordicsemi.com/attachment/bdd561ff56924e10ea78057b91c5c642
https://devzone.nordicsemi.com/attachment/bdd561ff56924e10ea78057b91c5c642
https://devzone.nordicsemi.com/attachment/bdd561ff56924e10ea78057b91c5c642


[36] QIU, L., WANG, Y., AND RUBIN, J. Analyzing the
analyzers: FlowDroid/IccTA, AmanDroid, and Droid-
Safe. In Proceedings of the 27th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis
(2018), ACM, pp. 176–186.

[37] RYAN, M. Bluetooth: With low energy comes low se-
curity. In 7th USENIX Workshop on Offensive Tech-
nologies, WOOT ’13, Washington, D.C., USA, August
13, 2013 (2013).

[38] SILVA, B. N., KHAN, M., AND HAN, K. Internet of
Things: A comprehensive review of enabling technolo-
gies, architecture, and challenges. IETE Technical Re-
view 35, 2 (2018), 205–220.

[39] WEI, F., ROY, S., OU, X., ET AL. Amandroid: A
precise and general inter-component data flow analy-
sis framework for security vetting of Android apps. In
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (2014), ACM,
pp. 1329–1341.

Appendix A: BLECryptracer Logic

We describe here the basic tracing mechanism employed
by BLECryptracer in order to identify the presence of
application-layer security for BLE data.

Backtracing BLE writes

BLE writes use one of the setValue methods in Table 2
to first set the value that is to be written, before calling
the method for performing the actual write. BLECryptracer
identifies all calls to these methods, and then traces the ori-
gins of the data held in the registers that are passed as input
to the methods.

Considering the smali4 code in Figure 8 as an ex-
ample, setValue is invoked at Line 13 and is passed
two registers as input. As setValue is an instance
method, the first input, local register v3, holds the
BluetoothGattCharacteristic object that the method is
invoked on. The second input, parameter register p2, holds
the data that is to be written to the BLE device, and is the sec-
ond argument that is passed to the method a (Line 1). BLE-
Cryptracer identifies p2 as the register that holds the data of
interest, and traces backward to determine if this data is the
result of some cryptographic processing. To achieve this, the
method(s) within the APK that invoke method a are identi-
fied, and the second input to each such method is traced. If
the BLE data had come from a local register, rather than a
parameter register, BLECryptracer would trace back within

4Android applications are typically written in Java and converted into
Dalvik bytecode. The smali format can be considered an “intermediate”
step between the high-level Java source and the bytecode.

1 .method private

a(Landroid/bluetooth/BluetoothGatt;[B...)V

2 .locals 10

3

4 .prologue

5 const/4 v9, 0x2

6 const/4 v8, 0x3

7 const/4 v7, 0x1

8 ...

9 invoke-virtual {v0, v3},

Landroid/bluetooth/BluetoothGattService;->

getCharacteristic(Ljava/util/UUID;)

Landroid/bluetooth/BluetoothGattCharacteristic;

10

11 move-result-object v3

12 ...

13 invoke-virtual {v3, p2},

Landroid/bluetooth/BluetoothGattCharacteristic;

->setValue([B)Z

14 invoke-virtual {v1, v3},

Landroid/bluetooth/BluetoothGatt;

->writeCharacteristic(Landroid/bluetooth/

BluetoothGattCharacteristic;)Z

Figure 8: Sample smali code for BLE attribute write.

method a’s instructions, to determine the origin of the data.
This backtracing is performed until either a crypto-library
is referenced, or a const-<> or new-array declaration is
encountered (which would indicate that no cryptography is
used). Note that calls to any method within the crypto-
libraries mentioned in Section 4.2 are accepted as evidence
of the use of cryptography with BLE data. The tool stops
processing an APK at the first instance where such a method
call is identified.

During execution, the BLECryptracer maintains a list of
registers (set within the context of a method) to be traced,
for each setValue method call within the application code.
This initially contains a single entry, which is the input to
the setValue method. A new register is added to the list if
it appears to have tainted the value of any of the registers al-
ready in the list. This could be due to simple operations such
as aget, aput or move-<> (apart from move-result vari-
ants), or it could be as a result of a comparison, arithmetic
or logic operation (in which case, the register holding the
operand on which the operation is performed is added to the
trace list). Similarly, if a register obtains a value from an in-
stance field (via sget or iget), then all instances where that
field is assigned a value are analyzed. However, the script
does not analyze the order in which the field is assigned val-
ues, as this would require activity life-cycle awareness.

Where a register is assigned a value that is output from a
method invocation via move-result, if the method is not an
external method, then the instructions within that method are
analysed, beginning with the return value and tracing back-
wards. In some instances, the actual source of a register’s
value is obfuscated due to the use of intermediate formatting

17



1 .method public onCharacteristicread(Landroid/bluetooth/

BluetoothGatt;Landroid/bluetooth/

BluetoothGattCharacteristic;I)V

2 ...

3 invoke-virtual {p2}, Landroid/bluetooth/

BluetoothGattCharacteristic;->getValue()[B

4 move-result-object v0

5 new-instance v2, Ljava/lang/StringBuilder;

6 invoke-direct {v2},

Ljava/lang/StringBuilder;-><init>()V

7 const-string v3, "read value: "

8 invoke-virtual {v2, v3},

Ljava/lang/StringBuilder;->append(Ljava/lang/

String;)Ljava/lang/StringBuilder;

9 move-result-object v2

10 invoke-static {v0},

Ljava/util/Arrays;->toString([B)Ljava/lang/ String;

11 move-result-object v3

12 invoke-virtual {v2, v3},

Ljava/lang/StringBuilder;->append(Ljava/lang/

String;)Ljava/lang/StringBuilder;

13 move-result-object v2

14 ...

Figure 9: Sample smali code for BLE attribute read.

functions. In an attempt to overcome this, BLECryptracer
traces the inputs to called methods as well. Further, if a reg-
ister is used as input to a method, then all other registers
that are inputs to the method are also added to the trace list.
While this captures some indirect value assignments, it runs
the risk of false positives. For this reason, we have included
the concept of Confidence Levels for the code output.

If, for an APK, the input to the setValue method can be
backtraced to cryptography directly, via only register value
transfers and as immediate results of method invocations,
then a confidence level of “High” is assigned to the result.
If a register cannot be traced back directly to a cryptographic
output, but if an indirect trace identifies the use of a cryp-
tography library, then a confidence level of “Medium” is
assigned. Finally, in the event that no cryptography use is
identified at High or Medium confidence levels, the script
performs a less stringent search through all the instructions
of the methods that it previously analyzed. This risks includ-
ing instances of cryptography use with functions unrelated
to BLE and is therefore assigned a “Low” confidence level.

Forward-tracing BLE reads

With BLE reads, a getValue variant is invoked and the out-
put, i.e., the value that is read, is moved to a register. To trace
this value, BLECryptracer identifies all calls to getValue

variants, then traces the output registers and all registers
they taint until either a crypto-library is referenced or the
register value changes. Such value changes can occur due
to new-array, new-instance and const declarations, as
well as by being assigned the output of various operations

(such as method invocations or arithmetic/logic operations).
With forward-tracing, the register holding the BLE data is

considered to taint another if, for example, the source register
is used in a method invocation, or comparison/arithmetic/-
logic operation, whose result is assigned to the destination
register. The destination register is then added to the trace
list. When a register is used as input to a method, then along
with the output of that method, the use of the register within
the method is also analyzed.

This method of analysis tends to result in a “tree” of traces.
As an example, considering the smali code in Figure 9, the
byte array output from the BLE read is stored in register
v0 (Line 4). This taints register v3 via a format conver-
sion function (Lines 10 and 11), which in turn taints v2 via
a java.lang.StringBuilder function (Lines 12 and 13).
At this point, all three registers are tainted and will be traced
until their values change.

The forward-tracing mode also assigns one of three con-
fidence levels to its output. “High” is assigned when
cryptographically-processed data is identified via the tracing
mechanism above; “Medium” is when the use of cryptogra-
phy is identified by tracing classes that implement interfaces.
“Low” is assigned when a less stringent search through all
encountered methods results in identification of a reference
to a cryptography library (similar to the backtracing case).

Handling obfuscation

APKs sometimes employ obfuscation techniques to protect
against reverse-engineering, and the question then arises as
to whether these techniques may impact the results of our
analysis. We therefore briefly discuss different obfuscation
techniques and why they do not impact our tool.

One of the most common techniques is identifier renam-
ing, where identifiers within the code are replaced with short,
meaningless names. However, because Androguard operates
on smali (rather than Java) code, BLECryptracer is able to
overcome the challenges posed by this technique. String en-
cryption is another obfuscation mechanism, but it again does
not affect the output of our tool as BLECryptracer does not
search for hard-coded strings. Further, our tool was verified
against a benchmarking application that utilized reflection.
The most complex obfuscation techniques are packing and
runtime-based obfuscation, but these are typically employed
by malware. Because we are looking for vulnerable (not ma-
licious) applications, we do not consider these techniques.
Therefore, in general, we believe our analysis to be unaf-
fected by most benign obfuscation mechanisms.

18


	1 Introduction
	2 Background
	3 BLE Co-Located Application Attacks
	3.1 Attack Mechanisms
	3.2 Discussion
	3.3 Stakeholders, Mitigation Strategies and Awareness

	4 Marketplace Application Analysis
	4.1 APK Dataset
	4.2 Identification of BLE Methods and Crypto-Libraries
	4.3 BLECryptracer
	4.4 Evaluation
	4.5 Results from Large-Scale APK Analysis
	4.6 Case Study: Firmware Update over BLE
	4.7 Limitations

	5 Related Work
	6 Conclusions
	7 Availability

